I'm new to python statsmodels package. I'm trying to simulate some data linearly related to log(x) and run a simple linear regression using statsmodels formula interface. Here are the codes:
import pandas as pd
import numpy as np
import statsmodels.formula.api as smf
B0 = 3
B1 = 0.5
x = np.linspace(10, 1e4, num = 1000)
epsilon = np.random.normal(0,3, size=1000)
y=B0 + B1*np.log(x)+epsilon
df1 = pd.DataFrame({'Y':y, 'X':x})
model = smf.OLS ('Y~np.log(X)', data=df1).fit()
I got error below:
ValueError Traceback (most recent call last)
<ipython-input-34-c0ab32ca2acf> in <module>()
7 y=B0 + B1*np.log(X)+epsilon
8 df1 = pd.DataFrame({'Y':y, 'X':X})
----> 9 smf.OLS ('Y~np.log(X)', data=df1)
/Users/tiger/anaconda/lib/python3.5/site-packages/statsmodels/regression/linear_model.py in __init__(self, endog, exog, missing, hasconst, **kwargs)
689 **kwargs):
690 super(OLS, self).__init__(endog, exog, missing=missing,
--> 691 hasconst=hasconst, **kwargs)
692 if "weights" in self._init_keys:
693 self._init_keys.remove("weights")
/Users/tiger/anaconda/lib/python3.5/site-packages/statsmodels/regression/linear_model.py in __init__(self, endog, exog, weights, missing, hasconst, **kwargs)
584 weights = weights.squeeze()
585 super(WLS, self).__init__(endog, exog, missing=missing,
--> 586 weights=weights, hasconst=hasconst, **kwargs)
587 nobs = self.exog.shape[0]
588 weights = self.weights
/Users/tiger/anaconda/lib/python3.5/site-packages/statsmodels/regression/linear_model.py in __init__(self, endog, exog, **kwargs)
89 """
90 def __init__(self, endog, exog, **kwargs):
---> 91 super(RegressionModel, self).__init__(endog, exog, **kwargs)
92 self._data_attr.extend(['pinv_wexog', 'wendog', 'wexog', 'weights'])
93
/Users/tiger/anaconda/lib/python3.5/site-packages/statsmodels/base/model.py in __init__(self, endog, exog, **kwargs)
184
185 def __init__(self, endog, exog=None, **kwargs):
--> 186 super(LikelihoodModel, self).__init__(endog, exog, **kwargs)
187 self.initialize()
188
/Users/tiger/anaconda/lib/python3.5/site-packages/statsmodels/base/model.py in __init__(self, endog, exog, **kwargs)
58 hasconst = kwargs.pop('hasconst', None)
59 self.data = self._handle_data(endog, exog, missing, hasconst,
---> 60 **kwargs)
61 self.k_constant = self.data.k_constant
62 self.exog = self.data.exog
/Users/tiger/anaconda/lib/python3.5/site-packages/statsmodels/base/model.py in _handle_data(self, endog, exog, missing, hasconst, **kwargs)
82
83 def _handle_data(self, endog, exog, missing, hasconst, **kwargs):
---> 84 data = handle_data(endog, exog, missing, hasconst, **kwargs)
85 # kwargs arrays could have changed, easier to just attach here
86 for key in kwargs:
/Users/tiger/anaconda/lib/python3.5/site-packages/statsmodels/base/data.py in handle_data(endog, exog, missing, hasconst, **kwargs)
562 exog = np.asarray(exog)
563
--> 564 klass = handle_data_class_factory(endog, exog)
565 return klass(endog, exog=exog, missing=missing, hasconst=hasconst,
566 **kwargs)
/Users/tiger/anaconda/lib/python3.5/site-packages/statsmodels/base/data.py in handle_data_class_factory(endog, exog)
551 else:
552 raise ValueError('unrecognized data structures: %s / %s' %
--> 553 (type(endog), type(exog)))
554 return klass
555
ValueError: unrecognized data structures: <class 'str'> / <class 'NoneType'>
I checked the documentations and everything seems to be right. Spent long time trying to understand why I got these errors but could not figure out. Help is very much appreciated.
In statsmodels.formula.api the ols method is lowercase. In statsmodels.api the OLS is all caps. In your case you need...
model = smf.ols('Y~np.log(X)', data=df1).fit()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With