I am writing a Python program that run tasks taken from a queue concurrently, to learn asyncio.
Items will be put onto a queue by interacting with a main thread (within REPL). Whenever a task is put onto the queue, it should be consumed and executed immediately. My approach is to kick off a separate thread and pass a queue to the event loop within that thread.
The tasks are running but only sequentially and I am not clear on how to run the tasks concurrently. My attempt is as follows:
import asyncio
import time
import queue
import threading
def do_it(task_queue):
'''Process tasks in the queue until the sentinel value is received'''
_sentinel = 'STOP'
def clock():
return time.strftime("%X")
async def process(name, total_time):
status = f'{clock()} {name}_{total_time}:'
print(status, 'START')
current_time = time.time()
end_time = current_time + total_time
while current_time < end_time:
print(status, 'processing...')
await asyncio.sleep(1)
current_time = time.time()
print(status, 'DONE.')
async def main():
while True:
item = task_queue.get()
if item == _sentinel:
break
await asyncio.create_task(process(*item))
print('event loop start')
asyncio.run(main())
print('event loop end')
if __name__ == '__main__':
tasks = queue.Queue()
th = threading.Thread(target=do_it, args=(tasks,))
th.start()
tasks.put(('abc', 5))
tasks.put(('def', 3))
Any advice pointing me in the direction of running these tasks concurrently would be greatly appreciated!
Thanks
UPDATE
Thank you Frank Yellin and cynthi8! I have reformed main() according to your advice:
await before asyncio.create_task - fixed concurrencyThe program now works as expected 👍
UPDATE 2
user4815162342 has offered further improvements, I have annotated his suggestions below.
'''
Starts auxiliary thread which establishes a queue and consumes tasks within a
queue.
Allow enqueueing of tasks from within __main__ and termination of aux thread
'''
import asyncio
import time
import threading
import functools
def do_it(started):
'''Process tasks in the queue until the sentinel value is received'''
_sentinel = 'STOP'
def clock():
return time.strftime("%X")
async def process(name, total_time):
print(f'{clock()} {name}_{total_time}:', 'Started.')
current_time = time.time()
end_time = current_time + total_time
while current_time < end_time:
print(f'{clock()} {name}_{total_time}:', 'Processing...')
await asyncio.sleep(1)
current_time = time.time()
print(f'{clock()} {name}_{total_time}:', 'Done.')
async def main():
# get_running_loop() get the running event loop in the current OS thread
# out to __main__ thread
started.loop = asyncio.get_running_loop()
started.queue = task_queue = asyncio.Queue()
started.set()
while True:
item = await task_queue.get()
if item == _sentinel:
# task_done is used to tell join when the work in the queue is
# actually finished. A queue length of zero does not mean work
# is complete.
task_queue.task_done()
break
task = asyncio.create_task(process(*item))
# Add a callback to be run when the Task is done.
# Indicate that a formerly enqueued task is complete. Used by queue
# consumer threads. For each get() used to fetch a task, a
# subsequent call to task_done() tells the queue that the processing
# on the task is complete.
task.add_done_callback(lambda _: task_queue.task_done())
# keep loop going until all the work has completed
# When the count of unfinished tasks drops to zero, join() unblocks.
await task_queue.join()
print('event loop start')
asyncio.run(main())
print('event loop end')
if __name__ == '__main__':
# started Event is used for communication with thread th
started = threading.Event()
th = threading.Thread(target=do_it, args=(started,))
th.start()
# started.wait() blocks until started.set(), ensuring that the tasks and
# loop variables are available from the event loop thread
started.wait()
tasks, loop = started.queue, started.loop
# call_soon schedules the callback callback to be called with args arguments
# at the next iteration of the event loop.
# call_soon_threadsafe is required to schedule callbacks from another thread
# put_nowait enqueues items in non-blocking fashion, == put(block=False)
loop.call_soon_threadsafe(tasks.put_nowait, ('abc', 5))
loop.call_soon_threadsafe(tasks.put_nowait, ('def', 3))
loop.call_soon_threadsafe(tasks.put_nowait, 'STOP')
As others pointed out, the problem with your code is that it uses a blocking queue which halts the event loop while waiting for the next item. The problem with the proposed solution, however, is that it introduces latency because it must occasionally sleep to allow other tasks to run. In addition to introducing latency, it prevents the program from ever going to sleep, even when there are no items in the queue.
An alternative is to switch to asyncio queue which is designed for use with asyncio. This queue must be created inside the running loop, so you can't pass it to do_it, you must retrieve it. Also, since it's an asyncio primitive, its put method must be invoked through call_soon_threadsafe to ensure that the event loop notices it.
One final issue is that your main() function uses another busy loop to wait for all the tasks to complete. This can be avoided by using Queue.join, which is explicitly designed for this use case.
Here is your code adapted to incorporate all of the above suggestions, with the process function remaining unchanged from your original:
import asyncio
import time
import threading
def do_it(started):
'''Process tasks in the queue until the sentinel value is received'''
_sentinel = 'STOP'
def clock():
return time.strftime("%X")
async def process(name, total_time):
status = f'{clock()} {name}_{total_time}:'
print(status, 'START')
current_time = time.time()
end_time = current_time + total_time
while current_time < end_time:
print(status, 'processing...')
await asyncio.sleep(1)
current_time = time.time()
print(status, 'DONE.')
async def main():
started.loop = asyncio.get_running_loop()
started.queue = task_queue = asyncio.Queue()
started.set()
while True:
item = await task_queue.get()
if item == _sentinel:
task_queue.task_done()
break
task = asyncio.create_task(process(*item))
task.add_done_callback(lambda _: task_queue.task_done())
await task_queue.join()
print('event loop start')
asyncio.run(main())
print('event loop end')
if __name__ == '__main__':
started = threading.Event()
th = threading.Thread(target=do_it, args=(started,))
th.start()
started.wait()
tasks, loop = started.queue, started.loop
loop.call_soon_threadsafe(tasks.put_nowait, ('abc', 5))
loop.call_soon_threadsafe(tasks.put_nowait, ('def', 3))
loop.call_soon_threadsafe(tasks.put_nowait, 'STOP')
Note: an unrelated issue with your code was that it awaited the result of create_task(), which nullified the usefulness of create_task() because it wasn't allowed to run in the background. (It would be equivalent to immediately joining a thread you've just started - you can do it, but it doesn't make much sense.) This issue is fixed both in the above code and in your edit to the question.
There are two problems with your code.
First, you should not have the await before the asyncio.create_task. This is possibly what is causing your code to run synchronously.
Then, once you've made your code run asynchronously, you need something after the while loop in main so that the code doesn't return immediately, but instead waits for all the jobs to finish. Another stackoverflow answer recommends:
while len(asyncio.Task.all_tasks()) > 1: # Any task besides main() itself?
await asyncio.sleep(0.2)
Alternatively there are versions of Queue that can keep track of running tasks.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With