I am doing some parallel processing, as follows:
with mp.Pool(8) as tmpPool:
results = tmpPool.starmap(my_function, inputs)
where inputs look like: [(1,0.2312),(5,0.52) ...] i.e., tuples of an int and a float.
The code runs nicely, yet I cannot seem to wrap it around a loading bar (tqdm), such as can be done with e.g., imap method as follows:
tqdm.tqdm(mp.imap(some_function,some_inputs))
Can this be done for starmap also?
Thanks!
tqdm(range(0, 30)) does not work with multiprocessing (as formulated in the code below).
That is, if you have operations that can take very different amounts of time (rather than the consistent 0.01 seconds you were using in your example), imap_unordered can smooth things out by yielding faster-calculated values ahead of slower-calculated values.
tqdm is the default iterator. It takes an iterator object as argument and displays a progress bar as it iterates over it. You can see the nice output with 9.90it/s meaning an average speed of 9.90 iterations per second.
It is the single execution of the function specified with the func -parameter of a Pool -method, called with arguments obtained from a single element of the transmitted chunk. A task consists of chunksize taskels.
It's not possible with starmap()
, but it's possible with a patch adding Pool.istarmap()
. It's based on the code for imap()
. All you have to do, is create the istarmap.py
-file and import the module to apply the patch before you make your regular multiprocessing-imports.
Python <3.8
# istarmap.py for Python <3.8
import multiprocessing.pool as mpp
def istarmap(self, func, iterable, chunksize=1):
"""starmap-version of imap
"""
if self._state != mpp.RUN:
raise ValueError("Pool not running")
if chunksize < 1:
raise ValueError(
"Chunksize must be 1+, not {0:n}".format(
chunksize))
task_batches = mpp.Pool._get_tasks(func, iterable, chunksize)
result = mpp.IMapIterator(self._cache)
self._taskqueue.put(
(
self._guarded_task_generation(result._job,
mpp.starmapstar,
task_batches),
result._set_length
))
return (item for chunk in result for item in chunk)
mpp.Pool.istarmap = istarmap
Python 3.8+
# istarmap.py for Python 3.8+
import multiprocessing.pool as mpp
def istarmap(self, func, iterable, chunksize=1):
"""starmap-version of imap
"""
self._check_running()
if chunksize < 1:
raise ValueError(
"Chunksize must be 1+, not {0:n}".format(
chunksize))
task_batches = mpp.Pool._get_tasks(func, iterable, chunksize)
result = mpp.IMapIterator(self)
self._taskqueue.put(
(
self._guarded_task_generation(result._job,
mpp.starmapstar,
task_batches),
result._set_length
))
return (item for chunk in result for item in chunk)
mpp.Pool.istarmap = istarmap
Then in your script:
import istarmap # import to apply patch
from multiprocessing import Pool
import tqdm
def foo(a, b):
for _ in range(int(50e6)):
pass
return a, b
if __name__ == '__main__':
with Pool(4) as pool:
iterable = [(i, 'x') for i in range(10)]
for _ in tqdm.tqdm(pool.istarmap(foo, iterable),
total=len(iterable)):
pass
The simplest way would probably be to apply tqdm() around the inputs, rather than the mapping function. For example:
inputs = zip(param1, param2, param3)
with mp.Pool(8) as pool:
results = pool.starmap(my_function, tqdm.tqdm(inputs, total=len(param1)))
As Darkonaut mentioned, as of this writing there's no istarmap
natively available. If you want to avoid patching, you can add a simple *_star
function as a workaround. (This solution inspired by this tutorial.)
import tqdm
import multiprocessing
def my_function(arg1, arg2, arg3):
return arg1 + arg2 + arg3
def my_function_star(args):
return my_function(*args)
jobs = 4
with multiprocessing.Pool(jobs) as pool:
args = [(i, i, i) for i in range(10000)]
results = list(tqdm.tqdm(pool.imap(my_function_star, args), total=len(args))
Some notes:
I also really like corey's answer. It's cleaner, though the progress bar does not appear to update as smoothly as my answer. Note that corey's answer is several orders of magnitude faster with the code I posted above with chunksize=1
(default). I'm guessing this is due to multiprocessing serialization, because increasing chunksize
(or having a more expensive my_function
) makes their runtime comparable.
I went with my answer for my application since my serialization/function cost ratio was very low.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With