Is this possible: to get (similar to) Stanford Named Entity Recognizer functionality using just NLTK?
Is there any example?
In particular, I am interested in extraction LOCATION part of text. For example, from text
The meeting will be held at 22 West Westin st., South Carolina, 12345 on Nov.-18
ideally I would like to get something like
(S
22/LOCATION
(LOCATION West/LOCATION Westin/LOCATION)
st./LOCATION
,/,
(South/LOCATION Carolina/LOCATION)
,/,
12345/LOCATION
.....
or simply
22 West Westin st., South Carolina, 12345
Instead, I am only able to get
(S
The/DT
meeting/NN
will/MD
be/VB
held/VBN
at/IN
22/CD
(LOCATION West/NNP Westin/NNP)
st./NNP
,/,
(GPE South/NNP Carolina/NNP)
,/,
12345/CD
on/IN
Nov.-18/-NONE-)
Note that if I enter my text into http://nlp.stanford.edu:8080/ner/process I get results far from perfect (street number and zip code are still missing) but at least "st." is a part of LOCATION and South Carolina is a LOCATION and not some "GPE / NNP" : ?
What I am doing wrong please? how can I fix it to use NLTK for extracting location piece from some text please?
Many thanks in advance!
nltk DOES have an interface for Stanford NER, check nltk.tag.stanford.NERTagger
.
from nltk.tag.stanford import NERTagger
st = NERTagger('/usr/share/stanford-ner/classifiers/all.3class.distsim.crf.ser.gz',
'/usr/share/stanford-ner/stanford-ner.jar')
st.tag('Rami Eid is studying at Stony Brook University in NY'.split())
output:
[('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'),
('at', 'O'), ('Stony', 'ORGANIZATION'), ('Brook', 'ORGANIZATION'),
('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'LOCATION')]
However every time you call tag
, nltk simply writes the target sentence into a file and runs Stanford NER command line tool to parse that file and finally parses the output back to python. Therefore the overhead of loading classifiers (around 1 min for me every time) is unavoidable.
If that's a problem, use Pyner.
First run Stanford NER as a server
java -mx1000m -cp stanford-ner.jar edu.stanford.nlp.ie.NERServer \
-loadClassifier classifiers/english.all.3class.distsim.crf.ser.gz -port 9191
then go to pyner
folder
import ner
tagger = ner.SocketNER(host='localhost', port=9191)
tagger.get_entities("University of California is located in California, United States")
# {'LOCATION': ['California', 'United States'],
# 'ORGANIZATION': ['University of California']}
tagger.json_entities("Alice went to the Museum of Natural History.")
#'{"ORGANIZATION": ["Museum of Natural History"], "PERSON": ["Alice"]}'
Hope this helps.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With