I've been pounding my head for a few days trying to figure out how to make a class have a nice clean public interface to perform registration of callback mechanisms. The callbacks can be C++11 lambdas, std::function<void(Type1,Type2)>
, std::function<void(Type2)>
, std::function<void()>
, or the results of std::bind()
.
The key to this interface is that the user of the class only needs to know about one public interface that accepts pretty much any functor/callback mechanism the user might throw at it.
struct Type1;
struct Type2; // May be the same type as Type1
class MyRegistrationClass
{
public:
/**
* Clean and easy to understand public interface:
* Handle registration of any functor matching _any_ of the following
* std::function<void(Type1,Type2)>
* std::function<void(Type2)> <-- move argument 2 into arg 1
* std::function<void()>
* or any result of std::bind() requiring two or fewer arguments that
* can convert to the above std::function< ... > types.
*/
template<typename F>
void Register(F f) {
doRegister(f);
}
private:
std::list< std::function< void(Type1, Type2) > > callbacks;
// Handle registration for std::function<void(Type1,Type2)>
template <typename Functor>
void doRegister(const Functor & functor,
typename std::enable_if<
!is_bind_expr<Functor>
&& functor_traits<decltype(&Functor::operator())>::arity == 2
>::type * = nullptr )
{
callbacks.push_back( functor );
}
// Handle registration for std::function<void(Type2)> by using std::bind
// to discard argument 2 ...
template <typename Functor>
void doRegister(const Functor & functor,
typename std::enable_if<
!std::is_bind_expression< Functor >::value
&& functor_traits<decltype(&Functor::operator())>::arity == 1
>::type * = nullptr )
{
// bind _2 into functor
callbacks.push_back( std::bind( functor, std::placeholders::_2 ) );
}
// Handle registration for std::function<void(Type2)> if given the results
// of std::bind()
template <typename Functor>
void doRegister(const Functor & functor,
typename std::enable_if<
is_bind_expr<Functor>
///////////////////////////////////////////////////////////////////////////
//// BEGIN Need arity of a bounded argument
///////////////////////////////////////////////////////////////////////////
&& functor_traits<decltype(Functor)>::arity == 1
///////////////////////////////////////////////////////////////////////////
//// END need arity of a bounded argument
///////////////////////////////////////////////////////////////////////////
>::type * = nullptr )
{
// Push the result of a bind() that takes a signature of void(Type2)
// and push it into the callback list, it will automatically discard
// argument1 when called, since we didn't bind _1 placeholder
callbacks.push_back( functor );
}
// And other "doRegister" methods exist in this class to handle the other
// types I want to support ...
}; // end class
The only reason to have the complexity of using enable_if<> is to turn on/off certain methods. We have to do this because when we want to pass in the results of std::bind() to the Register() method and it can ambiguously match against multiple registration methods if we had simple signatures like this:
void doRegister( std::function< void(Type1, Type2) > arg );
void doRegister( std::function< void(Type2) > arg ); // NOTE: type2 is first arg
void doRegister( std::function< void() > arg );
Rather than re-invent the wheel, I've referenced traits.hpp and then wrapped it with my own trait helper named "functor_traits" that adds support for std::bind()
This is what I've come up with so far to identify bounded function "arity" ... or a count of how many arguments the bind result expects as a :
#include <stdio.h>
// Get traits.hpp here: https://github.com/kennytm/utils/blob/master/traits.hpp
#include "traits.hpp"
using namespace utils;
using namespace std;
void f1() {};
int f2(int) { return 0; }
char f3(int,int) { return 0; }
struct obj_func0
{
void operator()() {};
};
struct obj_func1
{
int operator()(int) { return 0; };
};
struct obj_func2
{
char operator()(int,int) { return 0; };
};
/**
* Count the number of bind placeholders in a variadic list
*/
template <typename ...Args>
struct get_placeholder_count
{
static const int value = 0;
};
template <typename T, typename ...Args >
struct get_placeholder_count<T, Args...>
{
static const int value = get_placeholder_count< Args... >::value + !!std::is_placeholder<T>::value;
};
/**
* get_bind_arity<T> provides the number of arguments
* that a bounded expression expects to have passed in.
*
* This value is get_bind_arity<T>::arity
*/
template<typename T, typename ...Args>
struct get_bind_traits;
template<typename T, typename ...Args>
struct get_bind_traits< T(Args...) >
{
static const int arity = get_placeholder_count<Args...>::value;
static const int total_args = sizeof...(Args);
static const int bounded_args = (total_args - arity);
};
template<template<typename, typename ...> class X, typename T, typename ...Args>
struct get_bind_traits<X<T, Args...>>
{
// how many arguments were left unbounded by bind
static const int arity = get_bind_traits< T, Args... >::arity;
// total arguments on function being called by bind
static const int total_args = get_bind_traits< T, Args... >::total_args;
// how many arguments are bounded by bind:
static const int bounded_args = (total_args - arity);
// todo: add other traits (return type, args as tuple, etc
};
/**
* Define wrapper "functor_traits" that wraps around existing function_traits
*/
template <typename T, typename Enable = void >
struct functor_traits;
// Use existing function_traits library (traits.hpp)
template <typename T>
struct functor_traits<T, typename enable_if< !is_bind_expression< T >::value >::type > :
public function_traits<T>
{};
template <typename T>
struct functor_traits<T, typename enable_if< is_bind_expression< T >::value >::type >
{
static const int arity = get_bind_traits<T>::arity;
};
/**
* Proof of concept and test routine
*/
int main()
{
auto lambda0 = [] {};
auto lambda1 = [](int) -> int { return 0; };
auto lambda2 = [](int,int) -> char { return 0;};
auto func0 = std::function<void()>();
auto func1 = std::function<int(int)>();
auto func2 = std::function<char(int,int)>();
auto oper0 = obj_func0();
auto oper1 = obj_func1();
auto oper2 = obj_func2();
auto bind0 = bind(&f1);
auto bind1 = bind(&f2, placeholders::_1);
auto bind2 = bind(&f1, placeholders::_1, placeholders::_2);
auto bindpartial = bind(&f1, placeholders::_1, 1);
printf("action : signature : result\n");
printf("----------------------------------------\n");
printf("lambda arity 0: [](){} : %i\n", functor_traits< decltype(lambda0) >::arity );
printf("lambda arity 1: [](int){} : %i\n", functor_traits< decltype(lambda1) >::arity );
printf("lambda arity 2: [](int,int){} : %i\n", functor_traits< decltype(lambda2) >::arity );
printf("func arity 0: void() : %i\n", functor_traits< function<void()> >::arity );
printf("func arity 1: int(int) : %i\n", functor_traits< function<void(int)> >::arity );
printf("func arity 2: char(int,int) : %i\n", functor_traits< function<void(int,int)> >::arity );
printf("C::operator()() arity 0 : %i\n", functor_traits< decltype(oper0) >::arity );
printf("C::operator()(int) arity 1 : %i\n", functor_traits< decltype(oper1) >::arity );
printf("C::operator()(int,int) arity 2 : %i\n", functor_traits< decltype(oper2) >::arity );
///////////////////////////////////////////////////////////////////////////
// Testing the bind arity below:
///////////////////////////////////////////////////////////////////////////
printf("bind arity 0: void() : %i\n", functor_traits< decltype(bind0) >::arity );
printf("bind arity 1: int(int) : %i\n", functor_traits< decltype(bind1) >::arity );
printf("bind arity 2: void(int,int) : %i\n", functor_traits< decltype(bind2) >::arity );
printf("bind arity X: void(int, 1 ) : %i\n", functor_traits< decltype(bindpartial) >::arity );
return 0;
}
While this implementation works in gcc with libstdc++, I'm not quite sure if this is a portable solution since it tries to break apart the results of std::bind() ... The nearly private "_Bind" class that we really shouldn't need to do as users of libstdc++.
So my questions are: How can we determine the arity of bind results without decomposing the result of std::bind()? and How can we implement a full implementation of function_traits that supports bounded arguments as much as possible?
OP, your premises are flawed. You're looking for some kind of routine that can tell you, for any given object x
, how many arguments x
expects — that is, which of x()
, x(a)
, or x(a,b)
is well-formed.
The problem is that any number of those alternatives might be well-formed!
In a discussion on isocpp.org of this very topic, Nevin Liber very correctly writes:
For many function objects and functions, the concepts of arity, parameter type and return type don't have a single answer, as those things are based on how it [the object] is being used, not on how it has been defined.
Here's a concrete example.
struct X1 {
void operator() () { puts("zero"); }
void operator() (int) { puts("one"); }
void operator() (int,int) { puts("two"); }
void operator() (...) { puts("any number"); }
template<class... T>
void operator() (T...) { puts("any number, the sequel"); }
};
static_assert(functor_traits<X1>::arity == ?????);
So the only interface we can actually implement is one where we supply an actual argument count, and ask whether x
can be called with that number of arguments.
template<typename F>
struct functor_traits {
template<int A> static const int has_arity = ?????;
};
...But what if it can be called with one argument of type Foo
or two arguments of type Bar
? It seems that just knowing a (possible) arity of x
isn't useful — it doesn't really tell you how to call it. To know how to call x
, we need to know more or less what types we're trying to pass to it!
So, at this point, the STL comes to our rescue in at least one way: std::result_of
. (But see here for a safer decltype
-based alternative to result_of
; I use it here only for convenience.)
// std::void_t is coming soon to a C++ standard library near you!
template<typename...> using void_t = void;
template<typename F, typename Enable = void>
struct can_be_called_with_one_int
{ using type = std::false_type; };
template<typename F> // SFINAE
struct can_be_called_with_one_int<F, void_t<typename std::result_of<F(int)>::type>>
{ using type = std::true_type; };
template<typename F> // just create a handy shorthand
using can_be_called_with_one_int_t = typename can_be_called_with_one_int<F>::type;
Now we can ask questions like can_be_called_with_one_int_t<int(*)(float)>
or can_be_called_with_one_int_t<int(*)(std::string&)>
and get reasonable answers.
You could construct similar traits classes for can_be_called_with_no_arguments
, ...with_Type2
, ...with_Type1_and_Type2
, and then use the results of all three of those traits to build up a complete picture of your x
's behavior — at least, the part of x
's behavior that is relevant to your particular library.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With