This is my code. When I access dtr array in initImg function it gives a stack overflow exception. What might be the reason?
#define W 1000
#define H 1000
#define MAX 100000
void initImg(int img[], float dtr[])
{
for(int i=0;i<W;i++)
for(int j=0;j<H;j++)
img[i*W+j]=255;
for(int j=0;j<H;j++)
{
img[j] = 0;
img[W*(W-1)+j] = 0;
}
for(int i=0;i<W;i++)
{
img[i*W] = 0;
img[i*W+H-1] = 0;
}
for(int i=0;i<W;i++)
for(int j=0;j<H;j++)
{
if(img[i*W+j]==0)
dtr[i*W+j] = 0; // <------here
else
dtr[i*W+j] = MAX; // <------here
}
}
int main()
{
int image[W*H];
float dtr[W*H];
initImg(image,dtr);
return 0;
}
What is stack overflow? A stack overflow is a type of buffer overflow error that occurs when a computer program tries to use more memory space in the call stack than has been allocated to that stack.
On a C implementation with 8 byte double-precision floats, the declared array consumes 8 megabytes of data; if this is more memory than is available on the stack (as set by thread creation parameters or operating system limits), a stack overflow will occur.
A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().
A stack is a linear data structure, collection of items of the same type. Stack follows the Last In First Out (LIFO) fashion wherein the last element entered is the first one to be popped out. In stacks, the insertion and deletion of elements happen only at one endpoint of it.
This:
int image[W*H];
float dtr[W*H];
Creates each a 4 * 1000 * 1000 ~ 4 MB array into the stack. The stack space is limited, and usually it's less than 4 MB. Don't do that, create the arrays in the heap using new.
int *image = new int[W*H];
float *dtr = new float[W*H];
Your stack probably isn't big enough to hold a million ints and a million floats (8MB). So as soon as you try to access beyond your stack size, your operating system throws you an error. Objects or arrays above a certain size need to be allocated on the heap - preferably using a self-managing self-bounds-checking class such as std::vector
- the specific size depends on your implementation.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With