I started using spring-integration-kafka in my project, and i can produce and consume messages from Kafka. But now, i want to produce message to specific partition and also consume message from specific partition.
Example i want to produce message to partition 3, and the consume will only receive message from partition 3.
Until now, my topic has 8 partitions, and i can produce message to specific partition, but i have not found the way to config the consumer only receive message from specific partition yet.
So any suggestion on how should i config the consumer with spring-integration-kafka, or anything else need to do with the KafkaConsumer.java class for it can receive message from specific partition.
Thanks.
Here is my code:
the kafka-producer-context.xml
<int:publish-subscribe-channel id="inputToKafka" />
<int-kafka:outbound-channel-adapter
id="kafkaOutboundChannelAdapter" kafka-producer-context-ref="kafkaProducerContext"
auto-startup="true" order="1" channel="inputToKafka" />
<int-kafka:producer-context id="kafkaProducerContext"
producer-properties="producerProps">
<int-kafka:producer-configurations>
<int-kafka:producer-configuration
broker-list="127.0.0.1:9092,127.0.0.1:9093,127.0.0.1:9094"
async="true" topic="testTopic"
key-class-type="java.lang.String"
key-encoder="encoder"
value-class-type="java.lang.String"
value-encoder="encoder"
partitioner="partitioner"
compression-codec="default" />
</int-kafka:producer-configurations>
</int-kafka:producer-context>
<util:properties id="producerProps">
<prop key="queue.buffering.max.ms">500</prop>
<prop key="topic.metadata.refresh.interval.ms">3600000</prop>
<prop key="queue.buffering.max.messages">10000</prop>
<prop key="retry.backoff.ms">100</prop>
<prop key="message.send.max.retries">2</prop>
<prop key="send.buffer.bytes">5242880</prop>
<prop key="socket.request.max.bytes">104857600</prop>
<prop key="socket.receive.buffer.bytes">1048576</prop>
<prop key="socket.send.buffer.bytes">1048576</prop>
<prop key="request.required.acks">1</prop>
</util:properties>
<bean id="encoder"
class="org.springframework.integration.kafka.serializer.common.StringEncoder" />
<bean id="partitioner" class="org.springframework.integration.kafka.support.DefaultPartitioner"/>
<task:executor id="taskExecutor" pool-size="5"
keep-alive="120" queue-capacity="500" />
the KafkaProducer.java
public class KafkaProducer {
private static final Logger logger = LoggerFactory
.getLogger(KafkaProducer.class);
@Autowired
private MessageChannel inputToKafka;
public void sendMessage(String message) {
try {
inputToKafka.send(MessageBuilder.withPayload(message)
.setHeader(KafkaHeaders.TOPIC, "testTopic")
.setHeader(KafkaHeaders.PARTITION_ID, 3).build());
} catch (Exception e) {
logger.error(String.format(
"Failed to send [ %s ] to topic %s ", message, topic),
e);
}
}
}
the kafka-consumer-context.xml
<int:channel id="inputFromKafka">
<int:dispatcher task-executor="kafkaMessageExecutor" />
</int:channel>
<int-kafka:zookeeper-connect id="zookeeperConnect"
zk-connect="127.0.0.1:2181" zk-connection-timeout="6000"
zk-session-timeout="6000" zk-sync-time="2000" />
<int-kafka:inbound-channel-adapter
id="kafkaInboundChannelAdapter" kafka-consumer-context-ref="consumerContext"
auto-startup="true" channel="inputFromKafka">
<int:poller fixed-delay="10" time-unit="MILLISECONDS"
max-messages-per-poll="5" />
</int-kafka:inbound-channel-adapter>
<bean id="consumerProperties"
class="org.springframework.beans.factory.config.PropertiesFactoryBean">
<property name="properties">
<props>
<prop key="auto.offset.reset">smallest</prop>
<prop key="socket.receive.buffer.bytes">1048576</prop>
<prop key="fetch.message.max.bytes">5242880</prop>
<prop key="auto.commit.interval.ms">1000</prop>
</props>
</property>
</bean>
<int-kafka:consumer-context id="consumerContext"
consumer-timeout="1000" zookeeper-connect="zookeeperConnect"
consumer-properties="consumerProperties">
<int-kafka:consumer-configurations>
<int-kafka:consumer-configuration
group-id="defaultGrp" max-messages="20000">
<int-kafka:topic id="testTopic" streams="3" />
</int-kafka:consumer-configuration>
</int-kafka:consumer-configurations>
</int-kafka:consumer-context>
<task:executor id="kafkaMessageExecutor" pool-size="0-10"
keep-alive="120" queue-capacity="500" />
<int:outbound-channel-adapter channel="inputFromKafka"
ref="kafkaConsumer" method="processMessage" />
the KafkaConsumer.java
public class KafkaConsumer {
private static final Logger log = LoggerFactory
.getLogger(KafkaConsumer.class);
@Autowired
KafkaService kafkaService;
public void processMessage(Map<String, Map<Integer, List<byte[]>>> msgs) {
for (Map.Entry<String, Map<Integer, List<byte[]>>> entry : msgs
.entrySet()) {
log.debug("Topic:" + entry.getKey());
ConcurrentHashMap<Integer, List<byte[]>> messages = (ConcurrentHashMap<Integer, List<byte[]>>) entry
.getValue();
log.debug("\n**** Partition: \n");
Set<Integer> keys = messages.keySet();
for (Integer i : keys)
log.debug("p:"+i);
log.debug("\n**************\n");
Collection<List<byte[]>> values = messages.values();
for (Iterator<List<byte[]>> iterator = values.iterator(); iterator
.hasNext();) {
List<byte[]> list = iterator.next();
for (byte[] object : list) {
String message = new String(object);
log.debug("Message: " + message);
try {
kafkaService.receiveMessage(message);
} catch (Exception e) {
log.error(String.format("Failed to process message %s",
message));
}
}
}
}
}
}
So my problem is here. When i produce message to partition 3 or any partition, the KafkaConsumer always receive the message. All what i want are: the KafkaConsumer will only receive message from partition 3, not from other partition.
Thanks again.
You need to use the message-driven-channel-adapter.
As a variant, the KafkaMessageListenerContainer can accept org.springframework.integration.kafka.core.Partition array argument to specify topics and their partitions pair.
You need to wire up a listener container, using this constructor and provide it to the adapter using the listener-container
attribute.
We'll update the readme with an example.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With