I saw this great plot from fivethirty that has a slight overlap of density plots for different colleges. Check out this link at fivethirtyeight.com
How would you replicate this plot with ggplot2?
Specifically how would you get that slight overlap, facet_wrap isn't going to work.
TestFrame <-
data.frame(
Score =
c(rnorm(100, 0, 1)
,rnorm(100, 0, 2)
,rnorm(100, 0, 3)
,rnorm(100, 0, 4)
,rnorm(100, 0, 5))
,Group =
c(rep('Ones', 100)
,rep('Twos', 100)
,rep('Threes', 100)
,rep('Fours', 100)
,rep('Fives', 100))
)
ggplot(TestFrame, aes(x = Score, group = Group)) +
geom_density(alpha = .75, fill = 'black')
As always with ggplot, the key is getting the data in the right format, and then the plotting is pretty straightforward. I'm sure there would be another way to do this, but my approach was to do the density estimation with density()
and then to make a sort of manual geom_density()
with geom_ribbon()
, which takes a ymin
and ymax
, necessary for moving the shape off the x axis.
The rest of the challenge was in getting the order of the printing correct, since it seems that ggplot will print the widest ribbon first. In the end, the part that requires the bulkiest code is the production of the quartiles.
I also produced some data that is a bit more consistent with the original figure.
library(ggplot2)
library(dplyr)
library(broom)
rawdata <- data.frame(Score = rnorm(1000, seq(1, 0, length.out = 10), sd = 1),
Group = rep(LETTERS[1:10], 10000))
df <- rawdata %>%
mutate(GroupNum = rev(as.numeric(Group))) %>% #rev() means the ordering will be from top to bottom
group_by(Group, GroupNum) %>%
do(tidy(density(.$Score, bw = diff(range(.$Score))/20))) %>% #The original has quite a large bandwidth
group_by() %>%
mutate(ymin = GroupNum * (max(y) / 1.5), #This constant controls how much overlap between groups there is
ymax = y + ymin,
ylabel = ymin + min(ymin)/2,
xlabel = min(x) - mean(range(x))/2) #This constant controls how far to the left the labels are
#Get quartiles
labels <- rawdata %>%
mutate(GroupNum = rev(as.numeric(Group))) %>%
group_by(Group, GroupNum) %>%
mutate(q1 = quantile(Score)[2],
median = quantile(Score)[3],
q3 = quantile(Score)[4]) %>%
filter(row_number() == 1) %>%
select(-Score) %>%
left_join(df) %>%
mutate(xmed = x[which.min(abs(x - median))],
yminmed = ymin[which.min(abs(x - median))],
ymaxmed = ymax[which.min(abs(x - median))]) %>%
filter(row_number() == 1)
p <- ggplot(df, aes(x, ymin = ymin, ymax = ymax)) + geom_text(data = labels, aes(xlabel, ylabel, label = Group)) +
geom_vline(xintercept = 0, size = 1.5, alpha = 0.5, colour = "#626262") +
geom_vline(xintercept = c(-2.5, -1.25, 1.25, 2.5), size = 0.75, alpha = 0.25, colour = "#626262") +
theme(panel.grid = element_blank(),
panel.background = element_rect(fill = "#F0F0F0"),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank())
for (i in unique(df$GroupNum)) {
p <- p + geom_ribbon(data = df[df$GroupNum == i,], aes(group = GroupNum), colour = "#F0F0F0", fill = "black") +
geom_segment(data = labels[labels$GroupNum == i,], aes(x = xmed, xend = xmed, y = yminmed, yend = ymaxmed), colour = "#F0F0F0", linetype = "dashed") +
geom_segment(data = labels[labels$GroupNum == i,], x = min(df$x), xend = max(df$x), aes(y = ymin, yend = ymin), size = 1.5, lineend = "round")
}
p <- p + geom_text(data = labels[labels$Group == "A",], aes(xmed - xlabel/50, ylabel),
label = "Median", colour = "#F0F0F0", hjust = 0, fontface = "italic", size = 4)
Edit
I noticed the original actually does a bit of fudging by stretching out each distribution with a horizontal line (you can see a join if you look closely...). I added something similar with the second geom_segment()
in the loop.
Although there is a great & accepted answer available already - I finished my contribution as an alternative avenue without data reformatting.
TestFrame <-
data.frame(
Score =
c(rnorm(50, 3, 2)+rnorm(50, -1, 3)
,rnorm(50, 3, 2)+rnorm(50, -2, 3)
,rnorm(50, 3, 2)+rnorm(50, -3, 3)
,rnorm(50, 3, 2)+rnorm(50, -4, 3)
,rnorm(50, 3, 2)+rnorm(50, -5, 3))
,Group =
c(rep('Ones', 50)
,rep('Twos', 50)
,rep('Threes', 50)
,rep('Fours', 50)
,rep('Fives', 50))
)
require(ggplot2)
require(grid)
spacing=0.05
tm <- theme(legend.position="none", axis.line=element_blank(),axis.text.x=element_blank(),
axis.text.y=element_blank(),axis.ticks=element_blank(),
axis.title.x=element_blank(),axis.title.y=element_blank(),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.background = element_rect(fill = "transparent",colour = NA),
plot.margin = unit(c(0,0,0,0),"mm"))
firstQuintile = quantile(TestFrame$Score,0.2)
secondQuintile = quantile(TestFrame$Score,0.4)
median = quantile(TestFrame$Score,0.5)
thirdQuintile = quantile(TestFrame$Score,0.6)
fourthQuintile = quantile(TestFrame$Score,0.8)
ymax <- 1.5*max(density(TestFrame[TestFrame$Group=="Ones",]$Score)$y)
xmax <- 1.2*max(TestFrame$Score)
xmin <- 1.2*min(TestFrame$Score)
p0 <- ggplot(TestFrame[TestFrame$Group=="Ones",], aes(x = Score, group = Group)) + geom_density(fill = "transparent",colour = NA)+ylim(0-5*spacing,ymax)+xlim(xmin,xmax)+tm
p0 <- p0 + geom_vline(aes(xintercept=firstQuintile),color="gray",size=1.2)
p0 <- p0 + geom_vline(aes(xintercept=secondQuintile),color="gray",size=1.2)
p0 <- p0 + geom_vline(aes(xintercept=thirdQuintile),color="gray",size=1.2)
p0 <- p0 + geom_vline(aes(xintercept=fourthQuintile),color="gray",size=1.2)
p0 <- p0 + geom_vline(aes(xintercept=median),color="darkgray",size=2)
#previous line is a little hack for creating a working empty grid with proper sizing
p1 <- ggplot(TestFrame[TestFrame$Group=="Ones",], aes(x = Score, group = Group)) + geom_density(alpha = .85, fill = 'black', color="white",size=1)+tm+ylim(0,ymax)+xlim(xmin,xmax)+ geom_segment(aes(y=0,x=median(Score),yend=max(density(Score)$y),xend=median(Score)), color="white", linetype=2)
p2 <- ggplot(TestFrame[TestFrame$Group=="Twos",], aes(x = Score, group = Group)) + geom_density(alpha = .85, fill = 'black', color="white",size=1)+tm+ylim(0,ymax)+xlim(xmin,xmax)+ geom_segment(aes(y=0,x=median(Score),yend=max(density(Score)$y),xend=median(Score)), color="white", linetype=2)
p3 <- ggplot(TestFrame[TestFrame$Group=="Threes",], aes(x = Score, group = Group)) + geom_density(alpha = .85, fill = 'black', color="white",size=1)+tm+ylim(0,ymax)+xlim(xmin,xmax)+ geom_segment(aes(y=0,x=median(Score),yend=max(density(Score)$y),xend=median(Score)), color="white", linetype=2)
p4 <- ggplot(TestFrame[TestFrame$Group=="Fours",], aes(x = Score, group = Group)) + geom_density(alpha = .85, fill = 'black', color="white",size=1)+tm+ylim(0,ymax)+xlim(xmin,xmax)+ geom_segment(aes(y=0,x=median(Score),yend=max(density(Score)$y),xend=median(Score)), color="white", linetype=2)
p5 <- ggplot(TestFrame[TestFrame$Group=="Fives",], aes(x = Score, group = Group)) + geom_density(alpha = .85, fill = 'black', color="white",size=1)+tm+ylim(0,ymax)+xlim(xmin,xmax)+ geom_segment(aes(y=0,x=median(Score),yend=max(density(Score)$y),xend=median(Score)), color="white", linetype=2)
f <- grobTree(ggplotGrob(p1))
g <- grobTree(ggplotGrob(p2))
h <- grobTree(ggplotGrob(p3))
i <- grobTree(ggplotGrob(p4))
j <- grobTree(ggplotGrob(p5))
a1 <- annotation_custom(grob = f, xmin = xmin, xmax = xmax,ymin = -spacing, ymax = ymax)
a2 <- annotation_custom(grob = g, xmin = xmin, xmax = xmax,ymin = -spacing*2, ymax = ymax-spacing)
a3 <- annotation_custom(grob = h, xmin = xmin, xmax = xmax,ymin = -spacing*3, ymax = ymax-spacing*2)
a4 <- annotation_custom(grob = i, xmin = xmin, xmax = xmax,ymin = -spacing*4, ymax = ymax-spacing*3)
a5 <- annotation_custom(grob = j, xmin = xmin, xmax = xmax,ymin = -spacing*5, ymax = ymax-spacing*4)
pfinal <- p0 + a1 + a2 + a3 + a4 + a5
pfinal
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With