I have a pandas dataframe as follows:
ticker account value date
aa assets 100,200 20121231, 20131231
bb liabilities 50, 150 20141231, 20131231
I would like to split df['value']
and df['date']
so that the dataframe looks like this:
ticker account value date
aa assets 100 20121231
aa assets 200 20131231
bb liabilities 50 20141231
bb liabilities 150 20131231
Would greatly appreciate any help.
df.value = df.value.str.split(',')
df.date = df.date.str.split(',')
df = df.explode('value').explode("date").reset_index(drop=True)
df:
ticker account value date
0 aa assets 100 20121231
1 aa assets 100 20131231
2 aa assets 200 20121231
3 aa assets 200 20131231
4 bb liabilities 50 20141231
5 bb liabilities 50 20131231
6 bb liabilities 50 20141231
7 bb liabilities 50 20131231
I'm noticing this question a lot. That is, how do I split this column that has a list into multiple rows? I've seen it called exploding. Here are some links:
So I wrote a function that will do it.
def explode(df, columns):
idx = np.repeat(df.index, df[columns[0]].str.len())
a = df.T.reindex_axis(columns).values
concat = np.concatenate([np.concatenate(a[i]) for i in range(a.shape[0])])
p = pd.DataFrame(concat.reshape(a.shape[0], -1).T, idx, columns)
return pd.concat([df.drop(columns, axis=1), p], axis=1).reset_index(drop=True)
But before we can use it, we need lists (or iterable) in a column.
df = pd.DataFrame([['aa', 'assets', '100,200', '20121231,20131231'],
['bb', 'liabilities', '50,50', '20141231,20131231']],
columns=['ticker', 'account', 'value', 'date'])
df
split value
and date
columns:
df.value = df.value.str.split(',')
df.date = df.date.str.split(',')
df
Now we could explode on either column or both, one after the other.
explode(df, ['value','date'])
I removed strip
from @jezrael's timing because I could not effectively add it to mine. This is a necessary step for this question as OP has spaces in strings after commas. I was aiming at providing a generic way to explode a column given it already has iterables in it and I think I've accomplished that.
code
def get_df(n=1):
return pd.DataFrame([['aa', 'assets', '100,200,200', '20121231,20131231,20131231'],
['bb', 'liabilities', '50,50', '20141231,20131231']] * n,
columns=['ticker', 'account', 'value', 'date'])
small 2 row sample
medium 200 row sample
large 2,000,000 row sample
You can first split
columns, create Series
by stack
and remove whitespaces by strip
:
s1 = df.value.str.split(',', expand=True).stack().str.strip().reset_index(level=1, drop=True)
s2 = df.date.str.split(',', expand=True).stack().str.strip().reset_index(level=1, drop=True)
Then concat
both Series
to df1
:
df1 = pd.concat([s1,s2], axis=1, keys=['value','date'])
Remove old columns value
and date
and join
:
print (df.drop(['value','date'], axis=1).join(df1).reset_index(drop=True))
ticker account value date
0 aa assets 100 20121231
1 aa assets 200 20131231
2 bb liabilities 50 20141231
3 bb liabilities 150 20131231
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With