I have a multidimensional numpy
array.
The first array indicates the quality of the data. 0 is good, 1 is not so good.
For a first check I only want to use good data.
How do I split the array into two new ones?
My own idea does not work:
good_data = [x for x in data[0,:] if x = 1.0]
bad_data = [x for x in data[0,:] if x = 0.0]
Here is a small example indicating my problem:
import numpy as np
flag = np.array([0., 0., 0., 1., 1., 1.])
temp = np.array([300., 310., 320., 300., 222., 333.])
pressure = np.array([1013., 1013., 1013., 900., 900., 900.])
data = np.array([flag, temp, pressure])
good_data = data[0,:][data[0,:] == 1.0]
bad_data = data[0,:][data[0,:] == 0.0]
print good_data
The print statement gives me [1., 1., 1.]
.
But I am looking for [[1., 1., 1.], [300., 222., 333.], [900., 900., 900.]]
.
Is this what you are looking for?
good_data = data[0,:][data[0,:] == 1.0]
bad_data = data[0,:][data[0,:] == 0.0]
This returns a numpy.array
.
Alternatively, you can do as you suggested, but convert the resulting list to numpy.array
:
good_data = np.array([x for x in data[0,:] if x == 1.0])
Notice the comparison operator ==
in place of the assignment operator =
.
For your particular example, subset data using flag == 1
while iterating over the first index:
good_data = [data[n,:][flag == 1] for n in range(data.shape[0])]
If you really want the elements of good_data
to be lists, convert inside the comprehension:
good_data = [data[n,:][flag == 1].tolist() for n in range(data.shape[0])]
Thanks to Jaime who pointed out that the easy way to do this is:
good_data = data[:, data[0] == 1]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With