Here is my little script for simulating Levy motion:
clear all;
clc; close all;
t = 0; T = 1000; I = T-t;
dT = T/I; t = 0:dT:T; tau = T/I;
alpha = 1.5;
sigma = dT^(1/alpha);
mu = 0; beta = 0;
N = 1000;
X = zeros(N, length(I));
for k=1:N
L = zeros(1,I);
for i = 1:I-1
L( (i + 1) * tau ) = L(i*tau) + stable2( alpha, beta, sigma, mu, 1);
end
X(k,1:length(L)) = L;
end
q = 0.1:0.1:0.9;
quant = qlines2(X, q, t(1:length(X)), tau);
hold all
for i = 1:length(quant)
plot( t, quant(i) * t.^(1/alpha), ':k' );
end
Where stable2
returns a stable random variable with given parameters (you may replace it with normrnd(mu, sigma)
for this case, it's not crucial); qlines2
returns quantiles needed for plotting.
But I don't want to talk about math here. My problem is that this implementation is pretty slow, and I would like to speed it up. Unfortunately, computer science is not my main field - I heard something about methods like memoization, vectorization and that there is a lot of other techniques, but I don't know how to use them.
For example, I'm pretty sure I should replace this filthy double for-loop somehow, but I'm not sure what to do instead.
EDIT: Maybe I should use (and learn...) another language (Python, C, any functional one)? I always though that Matlab/OCTAVE is designed for numerical computation, but if change, then for which one?
The crucial bit is, as you said, the for loops, Matlab does not like those, so vectorization is indeed the keyword. (Together with preallocating the space.
I just altered you for loop section somewhat so that you do not have to reset L
over and over again, instead we save all L
s in a bigger matrix (also I elimiated the length(L)
command).
L = zeros(N,I);
for k=1:N
for i = 1:I-1
L(k,(i + 1) * tau ) = L(k,i*tau) + normrnd(mu, sigma);
end
X(k,1:I) = L(k,1:I);
end
Now you can already see that X(k,1:I) = L(k,1:I);
in the loop is obsolete and that also means that we can switch the order of the loops. This is crucial, because the i
-steps are recursive (depend on the previous step) that means we cannot vectorize this loop, we can only vectorize the k
-loop.
Now your original code needed 9.3 seconds on my machine, the new code still needs about the same time)
L = zeros(N,I);
for i = 1:I-1
for k=1:N
L(k,(i + 1) * tau ) = L(k,i*tau) + normrnd(mu, sigma);
end
end
X = L;
But now we can apply the vectorization, instead of looping throu all rows (the loop over k
) we can instead eliminate this loop, and doing all rows at "once".
L = zeros(N,I);
for i = 1:I-1
L(:,(i + 1) * tau ) = L(:,i*tau) + normrnd(mu, sigma); %<- this is not yet what you want, see comment below
end
X = L;
This code need only 0.045 seconds on my machine. I hope you still get the same output, because I have no idea what you are calculating, but I also hope you could see how you go about vectorizing code.
PS: I just noticed that we now use the same random number in the last example for the whole column, this is obviously not what you want. Instad you should generate a whole vector of random numbers, e.g:
L = zeros(N,I);
for i = 1:I-1
L(:,(i + 1) * tau ) = L(:,i*tau) + normrnd(mu, sigma,N,1);
end
X = L;
PPS: Great question!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With