We have N users with P avg. points per user, where each point is a single value between 0 and 1. We need to distribute the mass of each point using a normal distribution with a known density of 0.05 as the points have some uncertainty. Additionally, we need to wrap the mass around 0 and 1 such that e.g. a point at 0.95 will also allocate mass around 0. I've provided a working example below, which bins the normal distribution into D=50 bins. The example uses the Python typing module, but you can ignore that if you'd like.
from typing import List, Any
import numpy as np
import scipy.stats
import matplotlib.pyplot as plt
D = 50
BINS: List[float] = np.linspace(0, 1, D + 1).tolist()
def probability_mass(distribution: Any, x0: float, x1: float) -> float:
"""
Computes the area under the distribution, wrapping at 1.
The wrapping is done by adding the PDF at +- 1.
"""
assert x1 > x0
return (
(distribution.cdf(x1) - distribution.cdf(x0))
+ (distribution.cdf(x1 + 1) - distribution.cdf(x0 + 1))
+ (distribution.cdf(x1 - 1) - distribution.cdf(x0 - 1))
)
def point_density(x: float) -> List[float]:
distribution: Any = scipy.stats.norm(loc=x, scale=0.05)
density: List[float] = []
for i in range(D):
density.append(probability_mass(distribution, BINS[i], BINS[i + 1]))
return density
def user_density(points: List[float]) -> Any:
# Find the density of each point
density: Any = np.array([point_density(p) for p in points])
# Combine points and normalize
combined = density.sum(axis=0)
return combined / combined.sum()
if __name__ == "__main__":
# Example for one user
data: List[float] = [.05, .3, .5, .5]
density = user_density(data)
# Example for multiple users (N = 2)
print([user_density(x) for x in [[.3, .5], [.7, .7, .7, .9]]])
### NB: THE REMAINING CODE IS FOR ILLUSTRATION ONLY!
### NB: THE IMPORTANT THING IS TO COMPUTE THE DENSITY FAST!
middle: List[float] = []
for i in range(D):
middle.append((BINS[i] + BINS[i + 1]) / 2)
plt.bar(x=middle, height=density, width=1.0 / D + 0.001)
plt.xlim(0, 1)
plt.xlabel("x")
plt.ylabel("Density")
plt.show()
In this example N=1, D=50, P=4. However, we want to scale this approach to N=10000 and P=100 while being as fast as possible. It's unclear to me how we'd vectorize this approach. How do we best speed up this?
EDIT
The faster solution can have slightly different results. For instance, it could approximate the normal distribution instead of using the precise normal distribution.
EDIT2
We only care about computing density
using the user_density()
function. The plot is only to help explain the approach. We do not care about the plot itself :)
EDIT3
Note that P is the avg. points per user. Some users may have more and some may have less. If it helps, you can assume that we can throw away points such that all users have a max of 2 * P points. It's fine to ignore this part while benchmarking as long as the solution can handle a flexible # of points per user.
The normal distribution is the most important probability distribution in statistics because many continuous data in nature and psychology displays this bell-shaped curve when compiled and graphed.
The general formula for the probability density function of the normal distribution is. f(x) = \frac{e^{-(x - \mu)^{2}/(2\sigma^{2}) }} {\sigma\sqrt{2\pi}} where μ is the location parameter and σ is the scale parameter. The case where μ = 0 and σ = 1 is called the standard normal distribution.
Normal distribution, also known as the Gaussian distribution, is a probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean.
Very far away, because the probability that a normally distributed random variable exceeds its mean is 0.5 or 50%. This is a big difference: 10% (the correct answer) versus 50% (computed by wrongly assuming a normal distribution).
However, if the distribution is very far from normal, then any probabilities you might compute based on the mean, the standard deviation, and the normal table could be very wrong indeed. Consider a lottery (or a risky project, if you prefer) that pays back nothing 90% of the time, but pays $500 the remaining 10% of the time.
Standard deviation = 2 By the formula of the probability density of normal distribution, we can write; Hence, f(3,4,2) = 1.106. Question 2: If the value of random variable is 2, mean is 5 and the standard deviation is 4, then find the probability density function of the gaussian distribution. Solution: Given, Variable, x = 2 Mean = 5 and
Probability Mass Function The Probability Mass Function (PMF) is also called a probability function or frequency function which characterizes the distribution of a discrete random variable. Let X be a discrete random variable of a function, then the probability mass function of a random variable X is given by
You could get below 50ms for largest case (N=10000, AVG[P]=100, D=50) by using using FFT and creating data
in numpy friendly format. Otherwise it will be closer to 300 msec.
The idea is to convolve a single normal distribution centered at 0 with a series Dirac deltas.
See image below:
Using circular convolution solves two issues.
First one must create a distribution to be copied. Function mk_bell()
created a histogram of a normal distribution of stddev 0.05 centered at 0.
The distribution wraps around 1. One could use arbitrary distribution here. The spectrum of the distribution is computed are used for fast convolution.
Next a comb-like function is created. The peaks are placed at indices corresponding to peaks in user density. E.g.
peaks_location = [0.1, 0.3, 0.7]
D = 10
maps to
peak_index = (D * peak_location).astype(int) = [1, 3, 7]
dist = [0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0] # ones at [1, 3, 7]
You can quickly create a composition of Diract Deltas by computing indices of the bins for each peak location with help of np.bincount()
function.
In order to speed things even more one can compute comb-functions for user-peaks in parallel.
Array dist
is 2D-array of shape NxD
. It can be linearized to 1D array of shape (N*D)
. After this change element on position [user_id, peak_index]
will be accessible from index user_id*D + peak_index
.
With numpy-friendly input format (described below) this operation is easily vectorized.
The convolution theorem says that spectrum of convolution of two signals is equal to product of spectrums of each signal.
The spectrum is compute with numpy.fft.rfft
which is a variant of Fast Fourier Transfrom dedicated to real-only signals (no imaginary part).
Numpy allows to compute FFT of each row of the larger matrix with one command.
Next, the spectrum of convolution is computed by simple multiplication and use of broadcasting.
Next, the spectrum is computed back to "time" domain by Inverse Fourier Transform implemented in numpy.fft.irfft
.
To use the full speed of numpy one should avoid variable size data structure and keep to fixed size arrays. I propose to represent input data as three arrays.
uids
the identifier for user, integer 0..N-1peaks
, the location of the peakmass
, the mass of the peek, currently it is 1/numer-of-peaks-for-userThis representation of data allows quick vectorized processing. Eg:
user_data = [[0.1, 0.3], [0.5]]
maps to:
uids = [0, 0, 1] # 2 points for user_data[0], one from user_data[1]
peaks = [0.1, 0.3, 0.5] # serialized user_data
mass = [0.5, 0.5, 1] # scaling factors for each peak, 0.5 means 2 peaks for user 0
The code:
import numpy as np
import matplotlib.pyplot as plt
import time
def mk_bell(D, SIGMA):
# computes normal distribution wrapped and centered at zero
x = np.linspace(0, 1, D, endpoint=False);
x = (x + 0.5) % 1 - 0.5
bell = np.exp(-0.5*np.square(x / SIGMA))
return bell / bell.sum()
def user_densities_by_fft(uids, peaks, mass, D, N=None):
bell = mk_bell(D, 0.05).astype('f4')
sbell = np.fft.rfft(bell)
if N is None:
N = uids.max() + 1
# ensure that peaks are in [0..1) internal
peaks = peaks - np.floor(peaks)
# convert peak location from 0-1 to the indices
pidx = (D * (peaks + uids)).astype('i4')
dist = np.bincount(pidx, mass, N * D).reshape(N, D)
# process all users at once with Convolution Theorem
sdist = np.fft.rfft(dist)
sdist *= sbell
res = np.fft.irfft(sdist)
return res
def generate_data(N, Pmean):
# generateor for large data
data = []
for n in range(N):
# select P uniformly from 1..2*Pmean
P = np.random.randint(2 * Pmean) + 1
# select peak locations
chunk = np.random.uniform(size=P)
data.append(chunk.tolist())
return data
def make_data_numpy_friendly(data):
uids = []
chunks = []
mass = []
for uid, peaks in enumerate(data):
uids.append(np.full(len(peaks), uid))
mass.append(np.full(len(peaks), 1 / len(peaks)))
chunks.append(peaks)
return np.hstack(uids), np.hstack(chunks), np.hstack(mass)
D = 50
# demo for simple multi-distribution
data, N = [[0, .5], [.7, .7, .7, .9], [0.05, 0.3, 0.5, 0.5]], None
uids, peaks, mass = make_data_numpy_friendly(data)
dist = user_densities_by_fft(uids, peaks, mass, D, N)
plt.plot(dist.T)
plt.show()
# the actual measurement
N = 10000
P = 100
data = generate_data(N, P)
tic = time.time()
uids, peaks, mass = make_data_numpy_friendly(data)
toc = time.time()
print(f"make_data_numpy_friendly: {toc - tic}")
tic = time.time()
dist = user_densities_by_fft(uids, peaks, mass, D, N)
toc = time.time()
print(f"user_densities_by_fft: {toc - tic}")
The results on my 4-core Haswell machine are:
make_data_numpy_friendly: 0.2733159065246582
user_densities_by_fft: 0.04064297676086426
It took 40ms to process the data. Notice that processing data to numpy friendly format takes 6 times more time than the actual computation of distributions. Python is really slow when it comes to looping. Therefore I strongly recommend to generate input data directly in numpy-friendly way in the first place.
There are some issues to be fixed:
D
and downsamplingscipy.fft
offers move variants of FFT implementation that may be fasterIf you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With