I have an array of x,y,z coordinates of several (~10^10) points (only 5 shown here)
a= [[ 34.45 14.13 2.17]
[ 32.38 24.43 23.12]
[ 33.19 3.28 39.02]
[ 36.34 27.17 31.61]
[ 37.81 29.17 29.94]]
I want to make a new array with only those points which are at least some distance d
away from all other points in the list. I wrote a code using while
loop,
import numpy as np
from scipy.spatial import distance
d=0.1 #or some distance
i=0
selected_points=[]
while i < len(a):
interdist=[]
j=i+1
while j<len(a):
interdist.append(distance.euclidean(a[i],a[j]))
j+=1
if all(dis >= d for dis in interdist):
np.array(selected_points.append(a[i]))
i+=1
This works, but it is taking really long to perform this calculation. I read somewhere that while
loops are very slow.
I was wondering if anyone has any suggestions on how to speed up this calculation.
EDIT: While my objective of finding the particles which are at least some distance away from all the others stays the same, I just realized that there is a serious flaw in my code, let's say I have 3 particles, my code does the following, for the first iteration of i
, it calculates the distances 1->2
, 1->3
, let's say 1->2
is less than the threshold distance d
, so the code throws away particle 1
. For the next iteration of i
, it only does 2->3
, and let's say it finds that it is greater than d
, so it keeps particle 2
, but this is wrong! since 2 should also be discarded with particle 1
. The solution by @svohara is the correct one!
For big data sets and low-dimensional points (such as your 3-dimensional data), sometimes there is a big benefit to using a spatial indexing method. One popular choice for low-dimensional data is the k-d tree.
The strategy is to index the data set. Then query the index using the same data set, to return the 2-nearest neighbors for each point. The first nearest neighbor is always the point itself (with dist=0), so we really want to know how far away the next closest point is (2nd nearest neighbor). For those points where the 2-NN is > threshold, you have the result.
from scipy.spatial import cKDTree as KDTree
import numpy as np
#a is the big data as numpy array N rows by 3 cols
a = np.random.randn(10**8, 3).astype('float32')
# This will create the index, prepare to wait...
# NOTE: took 7 minutes on my mac laptop with 10^8 rand 3-d numbers
# there are some parameters that could be tweaked for faster indexing,
# and there are implementations (not in scipy) that can construct
# the kd-tree using parallel computing strategies (GPUs, e.g.)
k = KDTree(a)
#ask for the 2-nearest neighbors by querying the index with the
# same points
(dists, idxs) = k.query(a, 2)
# (dists, idxs) = k.query(a, 2, n_jobs=4) # to use more CPUs on query...
#Note: 9 minutes for query on my laptop, 2 minutes with n_jobs=6
# So less than 10 minutes total for 10^8 points.
# If the second NN is > thresh distance, then there is no other point
# in the data set closer.
thresh_d = 0.1 #some threshold, equiv to 'd' in O.P.'s code
d_slice = dists[:, 1] #distances to second NN for each point
res = np.flatnonzero( d_slice >= thresh_d )
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With