I am creating random Toeplitz matrices to estimate the probability that they are invertible. My current code is
import random
from scipy.linalg import toeplitz
import numpy as np
for n in xrange(1,25):
rankzero = 0
for repeats in xrange(50000):
column = [random.choice([0,1]) for x in xrange(n)]
row = [column[0]]+[random.choice([0,1]) for x in xrange(n-1)]
matrix = toeplitz(column, row)
if (np.linalg.matrix_rank(matrix) < n):
rankzero += 1
print n, (rankzero*1.0)/50000
Can this be sped up?
I would like to increase the value 50000 to get more accuracy but it is too slow to do so currently.
Profiling using only for n in xrange(10,14)
shows
400000 9.482 0.000 9.482 0.000 {numpy.linalg.lapack_lite.dgesdd}
4400000 7.591 0.000 11.089 0.000 random.py:272(choice)
200000 6.836 0.000 10.903 0.000 index_tricks.py:144(__getitem__)
1 5.473 5.473 62.668 62.668 toeplitz.py:3(<module>)
800065 4.333 0.000 4.333 0.000 {numpy.core.multiarray.array}
200000 3.513 0.000 19.949 0.000 special_matrices.py:128(toeplitz)
200000 3.484 0.000 20.250 0.000 linalg.py:1194(svd)
6401273/6401237 2.421 0.000 2.421 0.000 {len}
200000 2.252 0.000 26.047 0.000 linalg.py:1417(matrix_rank)
4400000 1.863 0.000 1.863 0.000 {method 'random' of '_random.Random' objects}
2201015 1.240 0.000 1.240 0.000 {isinstance}
[...]
One way is to save some work from repeated calling of toeplitz() function by caching the indexes where the values are being put. The following code is ~ 30% faster than the original code. The rest of the performance is in the rank calculation... And I don't know whether there exists a faster rank calculation for toeplitz matrices with 0s and 1s.
(update) The code is actually ~ 4 times faster if you replace matrix_rank by scipy.linalg.det() == 0 (determinant is faster then rank calculation for small matrices)
import random
from scipy.linalg import toeplitz, det
import numpy as np,numpy.random
class si:
#cache of info for toeplitz matrix construction
indx = None
l = None
def xtoeplitz(c,r):
vals = np.concatenate((r[-1:0:-1], c))
if si.indx is None or si.l != len(c):
a, b = np.ogrid[0:len(c), len(r) - 1:-1:-1]
si.indx = a + b
si.l = len(c)
# `indx` is a 2D array of indices into the 1D array `vals`, arranged so
# that `vals[indx]` is the Toeplitz matrix.
return vals[si.indx]
def doit():
for n in xrange(1,25):
rankzero = 0
si.indx=None
for repeats in xrange(5000):
column = np.random.randint(0,2,n)
#column=[random.choice([0,1]) for x in xrange(n)] # original code
row = np.r_[column[0], np.random.randint(0,2,n-1)]
#row=[column[0]]+[random.choice([0,1]) for x in xrange(n-1)] #origi
matrix = xtoeplitz(column, row)
#matrix=toeplitz(column,row) # original code
#if (np.linalg.matrix_rank(matrix) < n): # original code
if np.abs(det(matrix))<1e-4: # should be faster for small matrices
rankzero += 1
print n, (rankzero*1.0)/50000
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With