I am playing around with different languages to solve a simple value function iteration problem where I loop over a state-space grid. I am trying to understand the performance differences and how I could tweak each code. For posterity I have posted full length working examples for each language below. However, I believe that most of the tweaking is to be done in the while
loop. I am a bit confused what I am doing wrong in Fortran as the speed seems subpar.
Matlab ~2.7secs : I am avoiding a more efficient solution using the repmat
function for now to keep the codes comparable. Code seems to be automatically multithreaded onto 4 threads
beta = 0.98;
sigma = 0.5;
R = 1/beta;
a_grid = linspace(0,100,1001);
tic
[V_mat, next_mat] = valfun(beta, sigma, R ,a_grid);
toc
where valfun()
function [V_mat, next_mat] = valfun(beta, sigma, R, a_grid)
zeta = 1-1/sigma;
len = length(a_grid);
V_mat = zeros(2,len);
next_mat = zeros(2,len);
u = zeros(2,len,len);
c = zeros(2,len,len);
for i = 1:len
c(1,:,i) = a_grid(i) - a_grid/R + 20.0;
c(2,:,i) = a_grid(i) - a_grid/R;
end
u = c.^zeta * zeta^(-1);
u(c<=0) = -1e8;
tol = 1e-4;
outeriter = 0;
diff = 1000.0;
while (diff>tol) %&& (outeriter<20000)
outeriter = outeriter + 1;
V_last = V_mat;
for i = 1:len
[V_mat(1,i), next_mat(1,i)] = max( u(1,:,i) + beta*V_last(2,:));
[V_mat(2,i), next_mat(2,i)] = max( u(2,:,i) + beta*V_last(1,:));
end
diff = max(abs(V_mat - V_last));
end
fprintf("\n Value Function converged in %i steps. \n", outeriter)
end
Julia (after compilation) ~5.4secs (4 threads (9425469 allocations: 22.43 GiB)), ~7.8secs (1 thread (2912564 allocations: 22.29 GiB))
[EDIT: after adding correct broadcasting and @views its only 1.8-2.1seconds now, see below!]
using LinearAlgebra, UnPack, BenchmarkTools
struct paramsnew
β::Float64
σ::Float64
R::Float64
end
function valfun(params, a_grid)
@unpack β,σ, R = params
ζ = 1-1/σ
len = length(a_grid)
V_mat = zeros(2,len)
next_mat = zeros(2,len)
u = zeros(2,len,len)
c = zeros(2,len,len)
@inbounds for i in 1:len
c[1,:,i] = @. a_grid[i] - a_grid/R .+ 20.0
c[2,:,i] = @. a_grid[i] - a_grid/R
end
u = c.^ζ * ζ^(-1)
u[c.<=0] .= typemin(Float64)
tol = 1e-4
outeriter = 0
test = 1000.0
while test>tol
outeriter += 1
V_last = deepcopy(V_mat)
@inbounds Threads.@threads for i in 1:len # loop over grid points
V_mat[1,i], next_mat[1,i] = findmax( u[1,:,i] .+ β*V_last[2,:])
V_mat[2,i], next_mat[2,i] = findmax( u[2,:,i] .+ β*V_last[1,:])
end
test = maximum( abs.(V_mat - V_last)[.!isnan.( V_mat - V_last )])
end
print("\n Value Function converged in ", outeriter, " steps.")
return V_mat, next_mat
end
a_grid = collect(0:0.1:100)
p1 = paramsnew(0.98, 1/2, 1/0.98);
@time valfun(p1,a_grid)
print("\n should be compiled now \n")
@btime valfun(p1,a_grid)
Fortran (O3, mkl, qopenmp) ~9.2secs: I also must be doing something wrong when declaring the openmp
variables as the compilation will crash for some grid sizes when using openmp
(SIGSEGV error).
module mod_calc
use omp_lib
implicit none
integer, parameter :: dp = selected_real_kind(33,4931), len = 1001
public :: dp, len
contains
subroutine linspace(from, to, array)
real(dp), intent(in) :: from, to
real(dp), intent(out) :: array(:)
real(dp) :: range
integer :: n, i
n = size(array)
range = to - from
if (n == 0) return
if (n == 1) then
array(1) = from
return
end if
do i=1, n
array(i) = from + range * (i - 1) / (n - 1)
end do
end subroutine
subroutine calc_val()
real(dp):: bbeta, sigma, R, zeta, tol, test
real(dp):: a_grid(len), V_mat(2,len), V_last(2,len), &
u(len,len,2), c(len,len,2)
integer :: outeriter, i, sss, next_mat(2,len), fu
character(len=*), parameter :: FILE_NAME = 'data.txt' ! File name.
call linspace(from=0._dp, to=100._dp, array=a_grid)
bbeta = 0.98
sigma = 0.5
R = 1.0/0.98
zeta = 1.0 - 1.0/sigma
tol = 1e-4
test = 1000.0
outeriter = 0
do i = 1,len
c(:,i,1) = a_grid(i) - a_grid/R + 20.0
c(:,i,2) = a_grid(i) - a_grid/R
end do
u = c**zeta * 1.0/zeta
where (c<=0)
u = -1e6
end where
V_mat = 0.0
next_mat = 0.0
do while (test>tol .and. outeriter<20000)
outeriter = outeriter+1
V_last = V_mat
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(V_mat, next_mat,V_last, u, bbeta) &
!$OMP PRIVATE(i)
!$OMP DO SCHEDULE(static)
do i=1,len
V_mat(1,i) = maxval(u(:,i,1) + bbeta*V_last(2,:))
next_mat(1,i) = maxloc(u(:,i,1) + bbeta*V_last(2,:),1)
V_mat(2,i) = maxval(u(:,i,2) + bbeta*V_last(1,:))
next_mat(2,i) = maxloc(u(:,i,2) + bbeta*V_last(1,:),1)
end do
!$OMP END DO
!$OMP END PARALLEL
test = maxval(abs(log(V_last/V_mat)))
end do
end subroutine
end module mod_calc
program main
use mod_calc
implicit none
integer:: clck_counts_beg,clck_rate,clck_counts_end
call omp_set_num_threads(4)
call system_clock ( clck_counts_beg, clck_rate )
call calc_val()
call system_clock ( clck_counts_end, clck_rate )
write (*, '("Time = ",f6.3," seconds.")') (clck_counts_end - clck_counts_beg) / real(clck_rate)
end program main
There should be ways to reduce the amount of allocations (Julia reports 32-45% gc time!) but for now I am too novice to see them, so any comments and tipps are welcome.
Adding @views
and correct broadcasting to the while loop improved the Julia speed considerably (as expected, I guess) and hence beats the Matlab loop now. With 4 threads the code now takes only 1.97secs. Specifically,
@inbounds for i in 1:len
c[1,:,i] = @views @. a_grid[i] - a_grid/R .+ 20.0
c[2,:,i] = @views @. a_grid[i] - a_grid/R
end
u = @. c^ζ * ζ^(-1)
@. u[c<=0] = typemin(Float64)
while test>tol && outeriter<20000
outeriter += 1
V_last = deepcopy(V_mat)
@inbounds Threads.@threads for i in 1:len # loop over grid points
V_mat[1,i], next_mat[1,i] = @views findmax( @. u[1,:,i] + β*V_last[2,:])
V_mat[2,i], next_mat[2,i] = @views findmax( @. u[2,:,i] + β*V_last[1,:])
end
test = @views maximum( @. abs(V_mat - V_last)[!isnan( V_mat - V_last )])
end
Finaly, the highly optimized Julia code is 2x faster than Matlab vectorized code.
Pure Julia erfinv(x) [ = erf–1(x) ] 3–4× faster than Matlab's and 2–3× faster than SciPy's (Fortran Cephes). Julia code can actually be faster than typical “oplmized” C/Fortran code, by using techniques [metaprogramming/ code generalon] that are hard in a low-level language.
Julia prides itself on being very fast. Julia, unlike Python which is interpreted, is a compiled language that is primarily written in its own base. However, unlike other compiled languages like C, Julia is compiled at run-time, whereas traditional languages are compiled prior to execution.
Julia gives you the language features and a JIT compiler which makes it possible for you to optimize Julia code and get it as fast or faster than C/C++ or Fortran. With a language like Python you hit the ceiling of what is possible to do much sooner.
The reason the fortran is so slow is that it is using quadruple precision - I don't know Julia or Matlab but it looks as though double precision is being used in that case. Further as noted in the comments some of the loop orders are incorrect for Fortran, and also you are not consistent in your use of precision in the Fortran code, most of your constants are single precision. Correcting all these leads to the following:
Note I have turned off parallelisation for these, all results are single threaded. Code is below:
module mod_calc
!!$ use omp_lib
implicit none
!!$ integer, parameter :: dp = selected_real_kind(33,4931), len = 1001
integer, parameter :: dp = selected_real_kind(15), len = 1001
public :: dp, len
contains
subroutine linspace(from, to, array)
real(dp), intent(in) :: from, to
real(dp), intent(out) :: array(:)
real(dp) :: range
integer :: n, i
n = size(array)
range = to - from
if (n == 0) return
if (n == 1) then
array(1) = from
return
end if
do i=1, n
array(i) = from + range * (i - 1) / (n - 1)
end do
end subroutine
subroutine calc_val()
real(dp):: bbeta, sigma, R, zeta, tol, test
real(dp):: a_grid(len), V_mat(len,2), V_last(len,2), &
u(len,len,2), c(len,len,2)
integer :: outeriter, i, sss, next_mat(2,len), fu
character(len=*), parameter :: FILE_NAME = 'data.txt' ! File name.
call linspace(from=0._dp, to=100._dp, array=a_grid)
bbeta = 0.98_dp
sigma = 0.5_dp
R = 1.0_dp/0.98_dp
zeta = 1.0_dp - 1.0_dp/sigma
tol = 1e-4_dp
test = 1000.0_dp
outeriter = 0
do i = 1,len
c(:,i,1) = a_grid(i) - a_grid/R + 20.0_dp
c(:,i,2) = a_grid(i) - a_grid/R
end do
u = c**zeta * 1.0_dp/zeta
where (c<=0)
u = -1e6_dp
end where
V_mat = 0.0_dp
next_mat = 0.0_dp
do while (test>tol .and. outeriter<20000)
outeriter = outeriter+1
V_last = V_mat
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(V_mat, next_mat,V_last, u, bbeta) &
!$OMP PRIVATE(i)
!$OMP DO SCHEDULE(static)
do i=1,len
V_mat(i,1) = maxval(u(:,i,1) + bbeta*V_last(:, 2))
next_mat(i,1) = maxloc(u(:,i,1) + bbeta*V_last(:, 2),1)
V_mat(i,2) = maxval(u(:,i,2) + bbeta*V_last(:, 1))
next_mat(i,2) = maxloc(u(:,i,2) + bbeta*V_last(:, 1),1)
end do
!$OMP END DO
!$OMP END PARALLEL
test = maxval(abs(log(V_last/V_mat)))
end do
Write( *, * ) test
end subroutine
end module mod_calc
program main
use mod_calc
implicit none
integer:: clck_counts_beg,clck_rate,clck_counts_end
!!$ call omp_set_num_threads(2)
call system_clock ( clck_counts_beg, clck_rate )
call calc_val()
call system_clock ( clck_counts_end, clck_rate )
write (*, '("Time = ",f6.3," seconds.")') (clck_counts_end - clck_counts_beg) / real(clck_rate)
end program main
Compilation / linking:
ian@eris:~/work/stack$ gfortran --version
GNU Fortran (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
ian@eris:~/work/stack$ gfortran -Wall -Wextra -O3 jul.f90
jul.f90:36:48:
character(len=*), parameter :: FILE_NAME = 'data.txt' ! File name.
1
Warning: Unused parameter ‘file_name’ declared at (1) [-Wunused-parameter]
jul.f90:35:57:
integer :: outeriter, i, sss, next_mat(2,len), fu
1
Warning: Unused variable ‘fu’ declared at (1) [-Wunused-variable]
jul.f90:35:36:
integer :: outeriter, i, sss, next_mat(2,len), fu
1
Warning: Unused variable ‘sss’ declared at (1) [-Wunused-variable]
Running:
ian@eris:~/work/stack$ ./a.out
9.8343643237979391E-005
Time = 0.908 seconds.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With