I have 3 graphics cards in my workstation, one of them is Quadro K620, and the other two are Titan X. Now I would like to run my tensorflow code in one of the graphics card, so that I can leave the others idle for another task.
However, regardless of setting tf.device('/gpu:0')
or tf.device('/gpu:1')
, I found the 1st Titan X graphics card is always working, I don't know why.
import argparse
import os
import time
import tensorflow as tf
import numpy as np
import cv2
from Dataset import Dataset
from Net import Net
FLAGS = None
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--foldername', type=str, default='./data-large/')
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--num_epoches', type=int, default=100)
parser.add_argument('--learning_rate', type=float, default=0.5)
FLAGS = parser.parse_args()
net = Net(FLAGS.batch_size, FLAGS.learning_rate)
with tf.Graph().as_default():
# Dataset is a class for encapsulate the input pipeline
dataset = Dataset(foldername=FLAGS.foldername,
batch_size=FLAGS.batch_size,
num_epoches=FLAGS.num_epoches)
images, labels = dataset.samples_train
## The following code defines the network and train
with tf.device('/gpu:0'): # <==== THIS LINE
logits = net.inference(images)
loss = net.loss(logits, labels)
train_op = net.training(loss)
init_op = tf.group(tf.initialize_all_variables(), tf.initialize_local_variables())
sess = tf.Session()
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
start_time = time.time()
try:
step = 0
while not coord.should_stop():
_, loss_value = sess.run([train_op, loss])
step = step + 1
if step % 100 == 0:
format_str = ('step %d, loss = %.2f, time: %.2f seconds')
print(format_str % (step, loss_value, (time.time() - start_time)))
start_time = time.time()
except tf.errors.OutOfRangeError:
print('done')
finally:
coord.request_stop()
coord.join(threads)
sess.close()
Regarding to the line "<=== THIS LINE
:"
If I set tf.device('/gpu:0')
, the monitor says:
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Quadro K620 Off | 0000:03:00.0 On | N/A |
| 34% 45C P0 2W / 30W | 404MiB / 1993MiB | 5% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX TIT... Off | 0000:04:00.0 Off | N/A |
| 22% 39C P2 100W / 250W | 11691MiB / 12206MiB | 8% Default |
+-------------------------------+----------------------+----------------------+
| 2 GeForce GTX TIT... Off | 0000:81:00.0 Off | N/A |
| 22% 43C P2 71W / 250W | 111MiB / 12206MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
showing the 1st Titan X card is working.
If I set tf.device('/gpu:1')
, the monitor says:
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Quadro K620 Off | 0000:03:00.0 On | N/A |
| 34% 45C P0 2W / 30W | 411MiB / 1993MiB | 3% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX TIT... Off | 0000:04:00.0 Off | N/A |
| 22% 52C P2 73W / 250W | 11628MiB / 12206MiB | 12% Default |
+-------------------------------+----------------------+----------------------+
| 2 GeForce GTX TIT... Off | 0000:81:00.0 Off | N/A |
| 22% 42C P2 71W / 250W | 11628MiB / 12206MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
showing that the two Titan X cards are working, not the 2nd Titan X alone.
So any reason behind this and how to specify the gpu I want my program to run in?
Just a guess, but the default behavior for a tf.train.Optimizer
object (which I expect is created in net.training(loss)
) when you call minimize()
is colocate_gradients_with_ops=False
. This may lead to the backpropagation ops being placed on the default device, which will be /gpu:0
.
To work out if this is happening, you can iterate over sess.graph_def
and look for nodes that either have /gpu:0
in the NodeDef.device
field, or have an empty device
field (in which case they will be placed on /gpu:0
by default).
Another option for checking what devices are being used is to use the output_partition_graphs=True
option when running your step. This shows what devices TensorFlow is actually using (instead of, in sess.graph_def
, what devices your program is requesting), and should show exactly what nodes are running on /gpu:0
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With