Hello and thanks in advance. I'm using caret
to cross validate a neural-network from the nnet
package. In the method
parameter for the trainControl
function I can specify my cross-validation type, but all of these choose the observations at random to cross-validate against. Is there anyway I can use caret to cross-validate on specific observations in my data by either an ID or a hard-coded parameter? For example here's my current code:
library(nnet)
library(caret)
library(datasets)
data(iris)
train.control <- trainControl(
method = "repeatedcv"
, number = 4
, repeats = 10
, verboseIter = T
, returnData = T
, savePredictions = T
)
tune.grid <- expand.grid(
size = c(2,4,6,8)
,decay = 2^(-3:1)
)
nnet.train <- train(
x = iris[,1:4]
, y = iris[,5]
, method = "nnet"
, preProcess = c("center","scale")
, metric = "Accuracy"
, trControl = train.control
, tuneGrid = tune.grid
)
nnet.train
plot(nnet.train)
Suppose I wanted to add another column CV_GROUP
to the iris
data frame and I wanted caret to cross-validate the neural-network on observations with a value of 1
for that column:
iris$CV_GROUP <- c(rep.int(0,times=nrow(iris)-20), rep.int(1,times=20))
Is this possible with caret
?
Use index
and indexOut
control options. I coded a way to implement this that let's you select the number of repeats and folds that you want:
library(nnet)
library(caret)
library(datasets)
library(data.table)
library(e1071)
r <- 2 # number of repeats
k <- 5 # number of folds
data(iris)
iris <- data.table(iris)
# Create folds and repeats here - you could create your own if you want #
set.seed(343)
for (i in 1:r) {
newcol <- paste('fold.num',i,sep='')
iris <- iris[,eval(newcol):=sample(1:k, size=dim(iris)[1], replace=TRUE)]
}
folds.list.out <- list()
folds.list <- list()
list.counter <- 1
for (y in 1:r) {
newcol <- paste('fold.num', y, sep='')
for (z in 1:k) {
folds.list.out[[list.counter]] <- which(iris[,newcol,with=FALSE]==z)
folds.list[[list.counter]] <- which(iris[,newcol,with=FALSE]!=z)
list.counter <- list.counter + 1
}
iris <- iris[,!newcol,with=FALSE]
}
tune.grid <- expand.grid(
size = c(2,4,6,8)
,decay = 2^(-3:1)
)
train.control <- trainControl(
index=folds.list
, indexOut=folds.list.out
, verboseIter = T
, returnData = T
, savePredictions = T
)
iris <- data.frame(iris)
nnet.train <- train(
x = iris[,1:4]
, y = iris[,5]
, method = "nnet"
, preProcess = c("center","scale")
, metric = "Accuracy"
, trControl = train.control
, tuneGrid = tune.grid
)
nnet.train
plot(nnet.train)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With