I wrote a Spark application, which sets sets some configuration stuff via SparkConf
instance, like this:
SparkConf conf = new SparkConf().setAppName("Test App Name");
conf.set("spark.driver.cores", "1");
conf.set("spark.driver.memory", "1800m");
conf.set("spark.yarn.am.cores", "1");
conf.set("spark.yarn.am.memory", "1800m");
conf.set("spark.executor.instances", "30");
conf.set("spark.executor.cores", "3");
conf.set("spark.executor.memory", "2048m");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> inputRDD = sc.textFile(...);
...
When I run this application with the command (master=yarn
& deploy-mode=client
)
spark-submit --class spark.MyApp --master yarn --deploy-mode client /home/myuser/application.jar
everything seems to work fine, the Spark History UI shows correct executor information:
But when running it with (master=yarn
& deploy-mode=cluster
)
my Spark UI shows wrong executor information (~512 MB instead of ~1400 MB):
Also my App name equals Test App Name
when running in client mode, but is spark.MyApp
when running in cluster mode. It seems that however some default settings are taken when running in Cluster mode. What am I doing wrong here? How can I make these settings for the Cluster mode?
I'm using Spark 1.6.2 on a HDP 2.5 cluster, managed by YARN.
OK, I think I found out the problem! In short form: There's a difference between running Spark settings in Standalone and in YARN-managed mode!
So when you run Spark applications in the Standalone mode, you can focus on the Configuration documentation of Spark, see http://spark.apache.org/docs/1.6.2/configuration.html
You can use the following settings for Driver & Executor CPU/RAM (just as explained in the documentation):
spark.executor.cores
spark.executor.memory
spark.driver.cores
spark.driver.memory
BUT: When running Spark inside a YARN-managed Hadoop environment, you have to be careful with the following settings and consider the following points:
orientate on the "Spark on YARN" documentation rather then on the Configuration documentation linked above: http://spark.apache.org/docs/1.6.2/running-on-yarn.html (the properties explained here have a higher priority then the ones explained in the Configuration docu (this seems to describe only the Standalone cluster vs. client mode, not the YARN cluster vs. client mode!!))
you can't use SparkConf
to set properties in yarn-cluster mode! Instead use the corresponding spark-submit
parameters:
--executor-cores 5
--executor-memory 5g
--driver-cores 3
--driver-memory 3g
In yarn-client mode you can't use the spark.driver.cores
and spark.driver.memory
properties! You have to use the corresponding AM properties in a SparkConf
instance:
spark.yarn.am.cores
spark.yarn.am.memory
spark-submit
parameters!spark.executor.cores
and spark.executor.memory
in SparkConf
--executor-cores
and executor-memory
parameters in spark-submit
SparkConf
settings overwrite the spark-submit
parameter values!This is the textual form of my notes:
Hope I can help anybody else with this findings...
Just to add on to D. Müller's answer:
Same issue happened to me and I tried the settings with some different combination. I am running Pypark 2.0.0 on YARN cluster.
I found that driver-memory must be written during spark submit but executor-memory can be written in script (i.e. SparkConf) and the application will still work.
My application will die if driver-memory is less than 2g. The error is:
ERROR yarn.ApplicationMaster: RECEIVED SIGNAL TERM
ERROR yarn.ApplicationMaster: User application exited with status 143
CASE 1: driver & executor both written in SparkConf
spark = (SparkSession
.builder
.appName("driver_executor_inside")
.enableHiveSupport()
.config("spark.executor.memory","4g")
.config("spark.executor.cores","2")
.config("spark.yarn.executor.memoryOverhead","1024")
.config("spark.driver.memory","2g")
.getOrCreate())
spark-submit --master yarn --deploy-mode cluster myscript.py
CASE 2: - driver in spark submit - executor in SparkConf in script
spark = (SparkSession
.builder
.appName("executor_inside")
.enableHiveSupport()
.config("spark.executor.memory","4g")
.config("spark.executor.cores","2")
.config("spark.yarn.executor.memoryOverhead","1024")
.getOrCreate())
spark-submit --master yarn --deploy-mode cluster --conf spark.driver.memory=2g myscript.py
The job Finished with succeed status. Executor memory correct.
CASE 3: - driver in spark submit - executor not written
spark = (SparkSession
.builder
.appName("executor_not_written")
.enableHiveSupport()
.config("spark.executor.cores","2")
.config("spark.yarn.executor.memoryOverhead","1024")
.getOrCreate())
spark-submit --master yarn --deploy-mode cluster --conf spark.driver.memory=2g myscript.py
Apparently the executor memory is not set. Meaning CASE 2 actually captured executor memory settings despite writing it inside sparkConf.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With