My configuration is:
I want run this simple scala code (Esempio.scala):
package it.scala
// importo packages di Spark
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
object Wordcount {
def main(args: Array[String]) {
val inputs: Array[String] = new Array[String](2)
inputs(0) = "C:\\Users\\FobiDell\\Desktop\\input"
inputs(1) = "C:\\Users\\FobiDell\\Desktop\\output"
// oggetto SparkConf per settare i parametri sulla propria applicazione
// da fornire poi al cluster manager scelto (Yarn, Mesos o Standalone).
val conf = new SparkConf()
conf.setAppName("Smartphone Addiction")
conf.setMaster("local")
// oggetto SparkContext per connessione al cluster manager scelto
val sc = new SparkContext(conf)
//Read file and create RDD
val rawData = sc.textFile(inputs(0))
//convert the lines into words using flatMap operation
val words = rawData.flatMap(line => line.split(" "))
//count the individual words using map and reduceByKey operation
val wordCount = words.map(word => (word, 1)).reduceByKey(_ + _)
//Save the result
wordCount.saveAsTextFile(inputs(1))
//stop the spark context
sc.stop
}
}
So, if I use the Spark-shell everything is ok otherwise, from Eclipse IDE, if I select the file (Esempio.scala) and run it via Run->Run as->Scala application, I obtain this Exception:
Exception in thread "main" java.lang.ExceptionInInitializerError
at org.apache.spark.SparkContext.withScope(SparkContext.scala:701)
at org.apache.spark.SparkContext.textFile(SparkContext.scala:830)
at it.scala.Wordcount$.main(Esempio.scala:47)
at it.scala.Wordcount.main(Esempio.scala)
Caused by: com.fasterxml.jackson.databind.JsonMappingException: Incompatible Jackson version: 2.8.8
at com.fasterxml.jackson.module.scala.JacksonModule$class.setupModule(JacksonModule.scala:64)
at com.fasterxml.jackson.module.scala.DefaultScalaModule.setupModule(DefaultScalaModule.scala:19)
at com.fasterxml.jackson.databind.ObjectMapper.registerModule(ObjectMapper.java:745)
at org.apache.spark.rdd.RDDOperationScope$.<init>(RDDOperationScope.scala:82)
at org.apache.spark.rdd.RDDOperationScope$.<clinit>(RDDOperationScope.scala)
... 4 more
My pom.xml file is:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>it.hgfhgf.xhgfghf</groupId>
<artifactId>progetto</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>progetto</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<!-- Neo4j JDBC DRIVER -->
<dependency>
<groupId>org.neo4j</groupId>
<artifactId>neo4j-jdbc-driver</artifactId>
<version>3.1.0</version>
</dependency>
<!-- Scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.11</version>
</dependency>
<!-- Spark -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.2.1</version>
</dependency>
</dependencies>
</project>
I noticed that the .jar files that are into spark-2.2.1-bin-hadoop2.7/jars directory are:
Can anyone explain to me in simple terms what this exception is and how can it be resolved?
Spark 2.x contains the jackson 2.6.5
and neo4j-jdbc-driver
uses jackson 2.8.8
version, here the dependency conflict between two different version of jackson library.
That's why you are getting this Incompatible Jackson version: 2.8.8
error.
Try to override the dependency version for these[below] modules inside your pom.xml
and see if works,
or try adding below dependency into your pom.xml
<dependency>
<groupId>com.fasterxml.jackson.module</groupId>
<artifactId>jackson-module-scala_2.11</artifactId>
<version>2.8.8</version>
</dependency>
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With