Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Spark Structured Streaming recovering from a query exception

Is it possible to recover automatically from an exception thrown during query execution?

Context: I'm developing a Spark application that reads data from a Kafka topic, processes the data, and outputs to S3. However, after running for a couple of days in production, the spark application faces some network hiccups from S3 that causes an exception to be thrown and stops the application. It's also worth mentioning that this application runs on Kubernetes using GCP's Spark k8s Operator.

From what I've seen so far, these exceptions are minor and a simple restart of the application solves the issue. Can we handle those exceptions and restart the structured streaming query automatically?

Here's an example of a thrown exception:

    Exception in thread "main" org.apache.spark.sql.streaming.StreamingQueryException: Job aborted.
    === Streaming Query ===
    Identifier: ...
    Current Committed Offsets: ...
    Current Available Offsets: ...

    Current State: ACTIVE
    Thread State: RUNNABLE

    Logical Plan: ...

        at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:297)
        at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:193)
    Caused by: org.apache.spark.SparkException: Job aborted.
        at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:198)
        at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
        at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
        at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
        at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
        at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
        at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
        at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
        at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
        at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
        at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
        at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
        at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
        at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
        at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
        at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
        at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
        at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676)
        at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:285)
        at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:271)
        at io.blahblahView$$anonfun$11$$anonfun$apply$2.apply(View.scala:90)
        at io.blahblahView $$anonfun$11$$anonfun$apply$2.apply(View.scala:82)
        at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)
        at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
        at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
        at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)
        at io.blahblahView$$anonfun$11.apply(View.scala:82)
        at io.blahblahView$$anonfun$11.apply(View.scala:79)
        at org.apache.spark.sql.execution.streaming.sources.ForeachBatchSink.addBatch(ForeachBatchSink.scala:35)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$5$$anonfun$apply$17.apply(MicroBatchExecution.scala:537)
        at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
        at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
        at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$5.apply(MicroBatchExecution.scala:535)
        at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:351)
        at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch(MicroBatchExecution.scala:534)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:198)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:166)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:166)
        at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:351)
        at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:166)
        at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:160)
        at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:281)
        ... 1 more
    Caused by: java.io.FileNotFoundException: No such file or directory: s3a://.../view/v1/_temporary/0
        at org.apache.hadoop.fs.s3a.S3AFileSystem.getFileStatus(S3AFileSystem.java:993)
        at org.apache.hadoop.fs.s3a.S3AFileSystem.listStatus(S3AFileSystem.java:734)
        at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1517)
        at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1557)
        at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.getAllCommittedTaskPaths(FileOutputCommitter.java:291)
        at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitJobInternal(FileOutputCommitter.java:361)
        at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitJob(FileOutputCommitter.java:334)
        at org.apache.parquet.hadoop.ParquetOutputCommitter.commitJob(ParquetOutputCommitter.java:48)
        at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.commitJob(HadoopMapReduceCommitProtocol.scala:166)
        at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:187)
        ... 47 more

What's the simplest way of taking care of such issues automatically?

like image 439
Jeremie Piotte Avatar asked May 07 '20 19:05

Jeremie Piotte


1 Answers

After spending too many hours trying to find an elegant fix to this issue, and not finding anything, here's what I came up with.

Some might say it's a hack, but it's simple, it works and solves a complex problem. I tested it in production and it solves the issue of recovering automatically from failure due to an occasional minor exception.

I call it a The Query Watchdog. Here's the simplest version where the watchdog will retry running the query indefinitely:

val writer = df.writeStream...

while (true) {
   val query = writer.start()

   try {
        query.awaitTermination()
   } 
   catch {
       case e: StreamingQueryException => println("Streaming Query Exception caught!: " + e);
   }
}

Some people might want to replace the while(true) with some kind of counter to limit the number of retries. Someone could also supplement this code and send notifications through slack or email whenever a retry happened. Others could simply collect the number of retries in Prometheus.

Hope it helps,

Cheers

like image 116
Jeremie Piotte Avatar answered Oct 20 '22 14:10

Jeremie Piotte