I am trying to write an iterative algorithm with Spark. The algorithm contains one main loop in which different Spark commands for parallelism are used. If only one Spark command is used in each iteration everything works fine. When more than one command is used, the behaviour of Spark gets very strange. The main problem is that a map command on a RDD with 2 items does not result in 2, but in many many function calls.
It seems like Spark is executing in an iteration x every command from iteration 1 to iteration x-1
again. But not only in the last iteration of the loop, but in every single iteration of the loop!
I built a small example to reproduce the behaviour (With Java 1.8 and Spark 1.6.1)
At first the data structure that is used in the RDD:
public class Data implements Serializable {
private static final long serialVersionUID = -6367920689454127925L;
private String id;
private Integer value;
public Data(final String id, final Integer value) {
super();
this.id = id;
this.value = value;
}
public String getId() {
return this.id;
}
public Integer getValue() {
return this.value;
}
public void setValue(final Integer value) {
this.value = value;
}
@Override
public String toString() {
return "Data [id=" + this.id + ", value=" + this.value + "]";
}
}
For an max command we use a comparator:
public class MyComparator implements java.util.Comparator<Data>, Serializable {
private static final long serialVersionUID = 1383816444011380318L;
private static final double EPSILON = 0.001;
public MyComparator() {
}
@Override
public int compare(final Data x, final Data y) {
if (Math.abs(x.getValue() - y.getValue()) < EPSILON) {
return 0;
} else if (x.getValue() < y.getValue()) {
return -1;
} else {
return 1;
}
}
}
And now the main program with the algorithm:
public class Job implements Serializable {
private static final long serialVersionUID = -1828983500553835114L;
// Spark Settings
private static final String APPNAME = "DebugApp - Main";
private static final String SPARKMASTER = "local[1]";
private static final int MAX_ITERATIONS = 4;
public Job() {
}
public static void main(final String[] args) {
final Job job = new Job();
job.run();
}
public void run() {
final JavaSparkContext sparkContext = createSparkContext();
final List<Data> dataSet = new ArrayList<Data>();
dataSet.add(new Data("0", 0));
dataSet.add(new Data("1", 0));
JavaRDD<Data> dataParallel = sparkContext.parallelize(dataSet);
// We use an accumulator to count the number of calls within the map command
final Accumulator<Integer> accum = sparkContext.accumulator(0);
final MyComparator comparator = new MyComparator();
for (int iterations = 0; iterations < MAX_ITERATIONS; iterations++) {
// If the item which should be updated is selected using the iteration counter everything works fine...
// final String idToUpdate = new Integer(iterations % 2).toString();
// ..., but if the element with the minimal value is selected the number of executions in the map command increases.
final String idToUpdate = dataParallel.min(comparator).getId();
dataParallel = dataParallel.map(data -> {
accum.add(1); // Counting the number of function calls.
return updateData(data, idToUpdate);
});
}
final List<Data> resultData = dataParallel.collect();
System.out.println("Accumulator: " + accum.value());
for (Data data : resultData) {
System.out.println(data.toString());
}
}
private Data updateData(final Data data, final String id) {
if (data.getId().equals(id)) {
data.setValue(data.getValue() + 1);
}
return data;
}
private JavaSparkContext createSparkContext() {
final SparkConf conf = new SparkConf().setAppName(APPNAME).setMaster(SPARKMASTER);
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
conf.set("spark.kryo.registrator", "de.eprofessional.bidmanager2.engine.serialization.KryoRegistratorWrapper");
return new JavaSparkContext(conf);
}
}
I would expect that for each iteration we obtain 2 function calls, which is the case if the item to update is selected by using the iteration counter (see Accumulator Result 1). But if the element is selected by using the min
command, we obtain different results (See Accumulator Result 2):
+----------------+----------------------+----------------------+
| MAX_ITERATIONS | Accumulator Result 1 | Accumulator Result 2 |
+----------------+----------------------+----------------------+
| 1 | 2 | 2 |
| 2 | 4 | 6 |
| 3 | 6 | 12 |
| 4 | 8 | 20 |
+----------------+----------------------+----------------------+
Does someone have an explanation for the additional calls in the map
command?
Operations on RDDs defines what is called a "lineage". Each RDD has a reference to its parent (or parents, in case of e.g. a join). This lineage is visited when the RDD is materialized. That forms the basis of resiliency in RDDs: Spark can re-create all operations on a dataset to come to a result by executing said lineage on a given partition of data.
What's happening here is that we are chaining .map
calls. If we unfold the loop, we would see something like:
iter1 -> rdd.map(f)
iter2 -> rdd.map(f).map(f)
iter3 -> rdd.map(f).map(f).map(f)
...
We could see this by issuing a rdd.toDebugString
within the loop.
So, bottom line: each pass will actually add a lineage step to the previous stage. If we would like to break that lineage, we should checkpoint
the RDD at each iteration to 'remember' the last intermediate result. cache
has a similar effect, except that it's not guaranteed that the evaluation stops (in case there's no more memory to cache). Hence, RDD materialization may further evaluate the lineage.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With