How can I take a rdd array of spark, and split it into two rdds randomly so each rdd will include some part of data (lets say 97% and 3%).
I thought to shuffle the list and then shuffledList.take((0.97*rddList.count).toInt)
But how can I Shuffle the rdd?
Or is there a better way to split the list?
I've found a simple and fast way to split the array:
val Array(f1,f2) = data.randomSplit(Array(0.97, 0.03))
It will split the data using the provided weights.
You should use randomSplit
method:
def randomSplit(weights: Array[Double], seed: Long = Utils.random.nextLong): Array[RDD[T]]
// Randomly splits this RDD with the provided weights.
// weights for splits, will be normalized if they don't sum to 1
// returns split RDDs in an array
Here is its implementation in spark 1.0:
def randomSplit(weights: Array[Double], seed: Long = Utils.random.nextLong): Array[RDD[T]] = {
val sum = weights.sum
val normalizedCumWeights = weights.map(_ / sum).scanLeft(0.0d)(_ + _)
normalizedCumWeights.sliding(2).map { x =>
new PartitionwiseSampledRDD[T, T](this, new BernoulliSampler[T](x(0), x(1)),seed)
}.toArray
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With