I tried standard spark HashingTF example on DataBricks.
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
val sentenceData = spark.createDataFrame(Seq(
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
)).toDF("label", "sentence")
val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsData = tokenizer.transform(sentenceData)
val hashingTF = new HashingTF()
.setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
val featurizedData = hashingTF.transform(wordsData)
display(featurizedData)
I have diffuculty in understanding result below. Please see the image When numFeatures is 20
[0,20,[0,5,9,17],[1,1,1,2]]
[0,20,[2,7,9,13,15],[1,1,3,1,1]]
[0,20,[4,6,13,15,18],[1,1,1,1,1]]
If [0,5,9,17] are hash values
and [1,1,1,2] are frequencies.
17 has frequency 2
9 has 3 (it has 2)
13,15 have 1 while they must have 2.
Probably I am missing something. Could not find documentation of detailed explanation.
As mcelikkaya notes, the output frequencies are not what you would expect. This is due to hash collisions for a small number of features, 20 in this case. I have added some words to the input data (for illustration purposes) and upped features to 20,000, and then the correct frequencies are produced:
+-----+---------------------------------------------------------+-------------------------------------------------------------------------+--------------------------------------------------------------------------------------+
|label|sentence |words |rawFeatures |
+-----+---------------------------------------------------------+-------------------------------------------------------------------------+--------------------------------------------------------------------------------------+
|0 |Hi hi hi hi I i i i i heard heard heard about Spark Spark|[hi, hi, hi, hi, i, i, i, i, i, heard, heard, heard, about, spark, spark]|(20000,[3105,9357,11777,11960,15329],[2.0,3.0,1.0,4.0,5.0]) |
|0 |I i wish Java could use case classes spark |[i, i, wish, java, could, use, case, classes, spark] |(20000,[495,3105,3967,4489,15329,16213,16342,19809],[1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0])|
|1 |Logistic regression models are neat |[logistic, regression, models, are, neat] |(20000,[286,1193,9604,13138,18695],[1.0,1.0,1.0,1.0,1.0]) |
+-----+---------------------------------------------------------+-------------------------------------------------------------------------+------------------------------------------------------------
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With