I am very much pleased with Spark 2.0 DataSets because of it's compile time type safety. But here is couple of problem that I am not able to work out, I also didn't find good documentation for this.
Problem #1 - divide operation on aggregated column- Consider below code - I have a DataSet[MyCaseClass] and I wanted to groupByKey on c1,c2,c3 and sum(c4) / 8. The below code works well if I just calculate the sum but it gives compile time error for divide(8). I wonder how I can achieve following.
final case class MyClass (c1: String,
c2: String,
c3: String,
c4: Double)
val myCaseClass: DataSet[MyCaseClass] = ??? // assume it's being loaded
import sparkSession.implicits._
import org.apache.spark.sql.expressions.scalalang.typed.{sum => typedSum}
myCaseClass.
groupByKey(myCaseClass =>
(myCaseClass.c1, myCaseClass.c2, myCaseClass.c3)).
agg(typedSum[MyCaseClass](_.c4).name("sum(c4)").
divide(8)). //this is breaking with exception
show()
If I remove .divide(8) operation and run above command it gives me below output.
+-----------+-------------+
| key|sum(c4) |
+-----------+-------------+
| [A1,F2,S1]| 80.0|
| [A1,F1,S1]| 40.0|
+-----------+-------------+
Problem #2 - converting groupedByKey result to another Typed DataFrame - Now second part of my problem is I want output again a typed DataSet. For that I have another case class (not sure if it is needed) but I am not sure how to map with grouped result -
final case class AnotherClass(c1: String,
c2: String,
c3: String,
average: Double)
myCaseClass.
groupByKey(myCaseClass =>
(myCaseClass.c1, myCaseClass.c2, myCaseClass.c3)).
agg(typedSum[MyCaseClass](_.c4).name("sum(c4)")).
as[AnotherClass] //this is breaking with exception
but this again fails with an exception as grouped by key result is not directly mapped with AnotherClass.
PS : any other solution to achieve above is more than welcome.
The first problem can be resolved by using typed columns all the way down (KeyValueGroupedDataset.agg
expects TypedColumn(-s)
)
You can defined aggregation result as:
val eight = lit(8.0)
.as[Double] // Not necessary
val sumByEight = typedSum[MyClass](_.c4)
.divide(eight)
.as[Double] // Required
.name("div(sum(c4), 8)")
and plug it into following code:
val myCaseClass = Seq(
MyClass("a", "b", "c", 2.0),
MyClass("a", "b", "c", 3.0)
).toDS
myCaseClass
.groupByKey(myCaseClass => (myCaseClass.c1, myCaseClass.c2, myCaseClass.c3))
.agg(sumByEight)
to get
+-------+---------------+
| key|div(sum(c4), 8)|
+-------+---------------+
|[a,b,c]| 0.625|
+-------+---------------+
The second problem is a result of using a class which doesn't conform to a data shape. A correct representation could be:
case class AnotherClass(key: (String, String, String), sum: Double)
which used with data defined above:
myCaseClass
.groupByKey(myCaseClass => (myCaseClass.c1, myCaseClass.c2, myCaseClass.c3))
.agg(typedSum[MyClass](_.c4).name("sum"))
.as[AnotherClass]
would give:
+-------+---+
| key|sum|
+-------+---+
|[a,b,c]|5.0|
+-------+---+
but .as[AnotherClass]
is not necessary here if Dataset[((String, String, String), Double)]
is acceptable.
You can of course skip all of that and just mapGroups
(although not without performance penalty):
import shapeless.syntax.std.tuple._ // A little bit of shapeless
val tuples = myCaseClass
.groupByKey(myCaseClass => (myCaseClass.c1, myCaseClass.c2, myCaseClass.c3))
.mapGroups((group, iter) => group :+ iter.map(_.c4).sum)
with result
+---+---+---+---+
| _1| _2| _3| _4|
+---+---+---+---+
| a| b| c|5.0|
+---+---+---+---+
reduceGroups
could be a better option:
myCaseClass
.groupByKey(myCaseClass => (myCaseClass.c1, myCaseClass.c2, myCaseClass.c3))
.reduceGroups((x, y) => x.copy(c4=x.c4 + y.c4))
with resulting Dataset
:
+-------+-----------+
| _1| _2|
+-------+-----------+
|[a,b,c]|[a,b,c,5.0]|
+-------+-----------+
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With