I have a numpy array:
x = numpy.array([0.1, 0, 2, 3, 0, -0.5])
I want to get an array y which contains the nonzero elements of x sorted and idx which is the corresponding indices for x.
For example for the above example y would be [3, 2, 0.1, -0.5] and idx would be [3, 2, 0, 5]. I prefer a method that can be extended to the 2d array without looping over rows of x.
For a 2d example if i have
x = [[0.1, 0, 2, 3, 0, -0.5],
[1, 0, 0, 0, 0, 2 ]]
i want to get a
y =[[3, 2, 0.1, -0.5],[2,1]] and
idx = [[3, 2, 0, 5], [5, 0]].
Here are two vectorized approaches to solve for 1D and 2D cases separately -
def sort_nonzeros1D(x):
sidx = np.argsort(x)
out_idx = sidx[np.in1d(sidx, np.flatnonzero(x!=0))][::-1]
out_x = x[out_idx]
return out_x, out_idx
def sort_nonzeros2D(x):
x1 = np.where(x==0, np.nan, x)
sidx = np.argsort(x1,1)[:,::-1]
n = x.shape[1]
extent_idx = (x==0).sum(1)
valid_mask = extent_idx[:,None] <= np.arange(n)
split_idx = (n-extent_idx[:-1]).cumsum()
out_idx = np.split(sidx[valid_mask], split_idx)
y = x[np.arange(x.shape[0])[:,None], sidx]
out_x = np.split(y[valid_mask], split_idx)
return out_x, out_idx
Sample runs
1D Case :
In [461]: x
Out[461]: array([ 0.1, 0. , 2. , 3. , 0. , -0.5])
In [462]: sort_nonzeros1D(x)
Out[462]: (array([ 3. , 2. , 0.1, -0.5]), array([3, 2, 0, 5]))
2D Case :
In [470]: x
Out[470]:
array([[ 0.1, 0. , 2. , 3. , 0. , -0.5],
[ 1. , 0. , 0. , 0. , 0. , 2. ],
[ 7. , 0. , 2. , 5. , 1. , 0. ]])
In [471]: sort_nonzeros2D(x)
Out[471]:
([array([ 3. , 2. , 0.1, -0.5]),
array([ 2., 1.]),
array([ 7., 5., 2., 1.])],
[array([3, 2, 0, 5]), array([5, 0]), array([0, 3, 2, 4])])
Here's another solution
nzidx = np.where(x)
ranking = np.argsort(x[nzidx]) # append [::-1] for descending order
result = tuple(np.array(nzidx)[:, ranking])
The elements in order can be retrieved by x[result] regardless of dimensionality.
Demo:
>>
>>> x
array([[ 0. , -1.36688591, 0.12606516, -1.8546047 , 0. , 0.39758545],
[ 0.65160821, -1.80074214, 0. , 0. , 1.20758375, 0.33281977]])
>>> nzidx = np.where(x)
>>> ranking = np.argsort(x[nzidx])
>>> result = tuple(np.array(nzidx)[:, ranking])
>>>
>>> result
(array([0, 1, 0, 0, 1, 0, 1, 1]), array([3, 1, 1, 2, 5, 5, 0, 4]))
>>> x[result]
array([-1.8546047 , -1.80074214, -1.36688591, 0.12606516, 0.33281977,
0.39758545, 0.65160821, 1.20758375])
Update:
If the sorting should be row by row we can use list comprehension
nzidx = [np.where(r)[0] for r in x]
ranking = [np.argsort(r[idx]) for r, idx in zip(x, nzidx)]
result = [idx[rk] for idx, rk in zip(nzidx, ranking)]
or
nzidx = np.where(x)
blocks = np.searchsorted(nzidx[0], np.arange(1, x.shape[0]))
ranking = [np.argsort(r) for r in np.split(x[nzidx], blocks)]
result = [idx[rk] for idx, rk in zip(np.split(nzidx[1], blocks), ranking)]
Demo:
>>> x
array([[ 0. , 0. , 0. , 0. , 0.1218789 ,
0. , 0. , 0. ],
[ 0. , -0.6445128 , -0.00603869, 1.47947823, -1.4370367 ,
0. , 1.11606385, -1.22169137],
[ 0. , 0. , 0. , 1.54048119, -0.85764299,
0. , 0. , 0.32325807]])
>>> nzidx = np.where(x)
>>> blocks = np.searchsorted(nzidx[0], np.arange(1, x.shape[0]))
>>> ranking = [np.argsort(r) for r in np.split(x[nzidx], blocks)]
>>> result = [idx[rk] for idx, rk in zip(np.split(nzidx[1], blocks), ranking)]
>>> # package them
... [(r[idx], idx) for r, idx in zip(x, result)]
[(array([ 0.1218789]), array([4])), (array([-1.4370367 , -1.22169137, -0.6445128 , -0.00603869, 1.11606385,
1.47947823]), array([4, 7, 1, 2, 6, 3])), (array([-0.85764299, 0.32325807, 1.54048119]), array([4, 7, 3]))]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With