Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

sort dataFrame index containing string and number

I have a dataframe where the index value is a mixture of string and number separated by an underscore.

    sub_int1_ICA_int2  # 

enter image description here

I would like to sort the column index using int1 first and after that int2 The expected output would be:

    sub_1_ICA_1
    sub_1_ICA_2
    sub_1_ICA_3
    ...........
    sub_2_ICA_1
    sub_2_ICA_2
    ...........

I tried to use convert_numeric as I saw in many posts, but I get an error

     X.convert_objects(convert_numeric=True).sort_values(['id] , ascending=[True], inplace=True)
    >>(KeyError: 'id')

Any help would be nice!

like image 275
Ben Avatar asked Oct 29 '22 23:10

Ben


1 Answers

Use reindex by sorted list by custom function with dictionary of tuples:

print (df)
              a
sub_1_ICA_0   4
sub_1_ICA_1   8
sub_1_ICA_10  7
sub_1_ICA_11  3
sub_1_ICA_12  2
sub_1_ICA_2   6
sub_1_ICA_3   6
sub_2_ICA_1   1
sub_2_ICA_2   3


a = df.index.tolist()
b = {}
for x in a:
    i = x.split('_')
    b[x] = ((int(i[1]), int(i[-1])))
print (b)
{'sub_1_ICA_10': (1, 10), 'sub_1_ICA_11': (1, 11), 
'sub_1_ICA_1': (1, 1), 'sub_2_ICA_2': (2, 2),
 'sub_1_ICA_0': (1, 0), 'sub_1_ICA_12': (1, 12), 
 'sub_1_ICA_3': (1, 3), 'sub_1_ICA_2': (1, 2),
 'sub_2_ICA_1': (2, 1)}

c = sorted(a, key=lambda x: b[x])
print (c)
['sub_1_ICA_0', 'sub_1_ICA_1', 'sub_1_ICA_2', 'sub_1_ICA_3', 
'sub_1_ICA_10', 'sub_1_ICA_11', 'sub_1_ICA_12', 'sub_2_ICA_1', 'sub_2_ICA_2']

df = df.reindex(c)
print (df)
              a
sub_1_ICA_0   4
sub_1_ICA_1   8
sub_1_ICA_2   6
sub_1_ICA_3   6
sub_1_ICA_10  7
sub_1_ICA_11  3
sub_1_ICA_12  2
sub_2_ICA_1   1
sub_2_ICA_2   3

Another pure pandas solution:

#create MultiIndex by split index, convert to DataFrame
df1 = df.index.str.split('_', expand=True).to_frame()
#set columns and index to original df
df1.columns = list('abcd')
df1.index = df.index
#convert columns to int and sort
df1[['b','d']] = df1[['b','d']].astype(int)
df1 = df1.sort_values(['b','d'])
print (df1)
                a  b    c   d
sub_1_ICA_0   sub  1  ICA   0
sub_1_ICA_1   sub  1  ICA   1
sub_1_ICA_2   sub  1  ICA   2
sub_1_ICA_3   sub  1  ICA   3
sub_1_ICA_10  sub  1  ICA  10
sub_1_ICA_11  sub  1  ICA  11
sub_1_ICA_12  sub  1  ICA  12
sub_2_ICA_1   sub  2  ICA   1
sub_2_ICA_2   sub  2  ICA   2

df = df.reindex(df1.index)
print (df)
              a
sub_1_ICA_0   4
sub_1_ICA_1   8
sub_1_ICA_2   6
sub_1_ICA_3   6
sub_1_ICA_10  7
sub_1_ICA_11  3
sub_1_ICA_12  2
sub_2_ICA_1   1
sub_2_ICA_2   3

And last version with natsort:

from natsort import natsorted

df = df.reindex(natsorted(df.index))
print (df)
              a
sub_1_ICA_0   4
sub_1_ICA_1   8
sub_1_ICA_2   6
sub_1_ICA_3   6
sub_1_ICA_10  7
sub_1_ICA_11  3
sub_1_ICA_12  2
sub_2_ICA_1   1
sub_2_ICA_2   3

EDIT:

If duplicates values then create new columns by split, convert to int, sort and get back:

print (df)
              a
sub_1_ICA_0   4
sub_1_ICA_0   4
sub_1_ICA_1   8
sub_1_ICA_10  7
sub_1_ICA_11  3
sub_1_ICA_12  2
sub_1_ICA_2   6
sub_1_ICA_3   6
sub_2_ICA_1   1
sub_2_ICA_2   3

df.index = df.index.str.split('_', expand=True)
df = df.reset_index()
df[['level_1','level_3']] = df[['level_1','level_3']].astype(int)
df = df.sort_values(['level_1','level_3']).astype(str)

df = df.set_index(['level_0','level_1','level_2','level_3'])
df.index = df.index.map('_'.join)

print (df)

              a
sub_1_ICA_0   4
sub_1_ICA_0   4
sub_1_ICA_1   8
sub_1_ICA_2   6
sub_1_ICA_3   6
sub_1_ICA_10  7
sub_1_ICA_11  3
sub_1_ICA_12  2
sub_2_ICA_1   1
sub_2_ICA_2   3
like image 140
jezrael Avatar answered Dec 29 '22 15:12

jezrael