I searched Google, and saw a couple of StackOverflow posts about this error. They are not my cases.
I use keras to train a simple neural network and make some predictions on the splitted test dataset. But when use roc_auc_score
to calculate AUC, I got the following error:
"ValueError: Only one class present in y_true. ROC AUC score is not defined in that case."
.
I inspect the target label distribution, and they are highly imbalanced. Some labels(in the total 29 labels) have only 1 instance. So it's likely they will have no positive label instance in the test label. So the sklearn's roc_auc_score
function reported the only one class problem. That's reasonable.
But I'm curious, as when I use sklearn's cross_val_score
function, it can handle the AUC calculation without error.
my_metric = 'roc_auc'
scores = cross_validation.cross_val_score(myestimator, data,
labels, cv=5,scoring=my_metric)
I wonder what happened in the cross_val_score
, is it because the cross_val_score
use a stratified cross-validation data split?
UPDATE
I continued to make some digging, but still can't find the difference behind.I see that cross_val_score call check_scoring(estimator, scoring=None, allow_none=False)
to return a scorer, and the check_scoring
will call get_scorer(scoring)
which will return scorer=SCORERS[scoring]
And the SCORERS['roc_auc']
is roc_auc_scorer
;
the roc_auc_scorer
is made by
roc_auc_scorer = make_scorer(roc_auc_score, greater_is_better=True,
needs_threshold=True)
So, it's still using the roc_auc_score function. I don't get why cross_val_score behave differently with directly calling roc_auc_score.
I think your hunch is correct. The AUC (area under ROC curve) needs a sufficient number of either classes in order to make sense.
By default, cross_val_score
calculates the performance metric one each fold separately. Another option could be to do cross_val_predict
and compute the AUC over all folds combined.
You could do something like:
from sklearn.metrics import roc_auc_score
from sklearn.cross_validation import cross_val_predict
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
class ProbaEstimator(LogisticRegression):
"""
This little hack needed, because `cross_val_predict`
uses `estimator.predict(X)` internally.
Replace `LogisticRegression` with whatever classifier you like.
"""
def predict(self, X):
return super(self.__class__, self).predict_proba(X)[:, 1]
# some example data
X, y = make_classification()
# define your estimator
estimator = ProbaEstimator()
# get predictions
pred = cross_val_predict(estimator, X, y, cv=5)
# compute AUC score
roc_auc_score(y, pred)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With