Here is the question..
This is what I've done so far,
#include <stdio.h>
#include <math.h>
long int factorial(int m)
{
if (m==0 || m==1) return (1);
else return (m*factorial(m-1));
}
double power(double x,int n)
{
double val=1;
int i;
for (i=1;i<=n;i++)
{
val*=x;
}
return val;
}
double sine(double x)
{
int n;
double val=0;
for (n=0;n<8;n++)
{
double p = power(-1,n);
double px = power(x,2*n+1);
long fac = factorial(2*n+1);
val += p * px / fac;
}
return val;
}
int main()
{
double x;
printf("Enter angles in degrees: ");
scanf("%lf",&x);
printf("\nValue of sine of %.2f is %.2lf\n",x,sine(x * M_PI / 180));
printf("\nValue of sine of %.2f from library function is %.2lf\n",x,sin(x * M_PI / 180));
return 0;
}
The problem is that the program works perfectly fine from 0 to 180 degrees, but beyond that it gives error.. Also when I increase the value of n
in for (n=0;n<8;n++)
beyond 8, i get significant error.. There is nothing wrong with the algorithm, I've tested it in my calculator, and the program seems to be fine as well.. I think the problem is due to the range of the data type.. what should i correct to get rid of this error?
Thanks..
You are correct that the error is due to the range of the data type. In sine(), you are calculating the factorial of 15, which is a huge number and does not fit in 32 bits (which is presumably what long int is implemented as on your system). To fix this, you could either:
15!
is indeed beyond range that a 32bit integer can hold. I'd use doubles throughout if I were you.
The taylor series for sin(x)
converges more slowly for large values of x. For x outside -π,π. I'd add/subtract multiples of 2*π to get as small an x as possible.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With