Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Simple tool/library to visualize huge python dict

I have a huge dict structure like this one:

my_data = {
    'key1': {
        '_': 'value1': 'aaa'
    },
    'key2': {
        '_': 'value2': 'bbb',
        'key2.1': {
            '_': 'ccc',
            'key2.1.1': {
                '_': 'ddd'
            }
        }
        'key2.2': {
            '_': 'eee',
            'key2.2.1': {
                '_': 'fff'
            }
            'key2.2.2': {
                '_': 'ggg'
            }               
        }
    }
}

and so on.

I want to display it to user in a kind of tree representation, using GTK, TK or anything to be able to browse it collapse and expand branches and probably search keys and values.

May be I do not need to develop such a tool by hands and there is already something that can visualize this kind of data out of the box?

like image 570
lig Avatar asked Feb 22 '13 11:02

lig


3 Answers

I do not know of a ready-to-use tool, but you could use Traits UI to swiftly develop your own

from enthought.traits.api \
    import HasTraits, Instance

from enthought.traits.ui.api \
    import View, VGroup, Item, ValueEditor

class DictEditor(HasTraits):
    Object = Instance( object )

    def __init__(self, obj, **traits):
        super(DictEditor, self).__init__(**traits)
        self.Object = obj

    def trait_view(self, name=None, view_elements=None):
        return View(
          VGroup(
            Item( 'Object',
                  label      = 'Debug',
                  id         = 'debug',
                  editor     = ValueEditor(),
                  style      = 'custom',
                  dock       = 'horizontal',
                  show_label = False
            ),
          ),
          title     = 'Dictionary Editor',
          width     = 800,
          height    = 600,
          resizable = True,
        )


def build_sample_data():
    my_data = dict(zip(range(10),range(10,20)))
    my_data[11] = dict(zip(range(10),range(10,20)))
    my_data[11][11] = dict(zip(range(10),range(10,20)))
    return my_data

# Test
if __name__ == '__main__':
    my_data = build_sample_data()
    b = DictEditor(my_data)
    b.configure_traits()

That's it. You will have a GUI like:

Traits UI uses the Model-View-Controller approach to create GUI without having the need to programatically create every widget. Here, I use the predefined ValueEditor to display arbitrary types. You can now extend it to support searching, filtering etc...screenshot

EDIT

Simple extension to support filtering:

# -*- coding: utf-8 -*-
"""
Created on Fri Feb 22 12:52:28 2013

@author: kranzth
"""
from enthought.traits.api \
    import HasTraits, Instance, Str, on_trait_change

from enthought.traits.ui.api \
    import View, VGroup, Item, ValueEditor, TextEditor

from copy import deepcopy

class DictEditor(HasTraits):
    SearchTerm = Str()
    Object = Instance( object )

    def __init__(self, obj, **traits):
        super(DictEditor, self).__init__(**traits)
        self._original_object = obj
        self.Object = self._filter(obj)

    def trait_view(self, name=None, view_elements=None):
        return View(
          VGroup(
            Item( 'SearchTerm',
                  label      = 'Search:',
                  id         = 'search',
                  editor     = TextEditor(),
                  #style      = 'custom',
                  dock       = 'horizontal',
                  show_label = True
            ),
            Item( 'Object',
                  label      = 'Debug',
                  id         = 'debug',
                  editor     = ValueEditor(),
                  style      = 'custom',
                  dock       = 'horizontal',
                  show_label = False
            ),
          ),
          title     = 'Dictionary Editor',
          width     = 800,
          height    = 600,
          resizable = True,
        )

    @on_trait_change("SearchTerm")
    def search(self):
        self.Object = self._filter(self._original_object, self.SearchTerm)

    def _filter(self, object_, search_term=None):
        def has_matching_leaf(obj):
            if isinstance(obj, list):
                return any(
                        map(has_matching_leaf, obj))
            if isinstance(obj, dict):
                return any(
                        map(has_matching_leaf, obj.values()))
            else:
                try:
                    if not str(obj) == search_term:
                        return False
                    return True
                except ValueError:
                    False

        obj = deepcopy(object_)
        if search_term is None:
            return obj

        if isinstance(obj, dict):
            for k in obj.keys():
                if not has_matching_leaf(obj[k]):
                    del obj[k]

            for k in obj.keys():
                if isinstance(obj, dict):
                    obj[k] = self._filter(obj[k], search_term)
                elif isinstance(obj, list):
                    filter(has_matching_leaf,obj[k])

        return obj



def build_sample_data():
    def make_one_level_dict():
        return dict(zip(range(100),
                        range(100,150) + map(str,range(150,200))))

    my_data = make_one_level_dict()
    my_data[11] = make_one_level_dict()
    my_data[11][11] = make_one_level_dict()
    return my_data

# Test
if __name__ == '__main__':
    my_data = build_sample_data()
    b = DictEditor(my_data)
    b.configure_traits()

will give you a textbox with "filter-as-you-type". The search isn't completely correct for all cases, but you can figure out the idea.

Please note that in this sample the data in the dict are partly integers and partly strings, and both types will be found.

screenshot

like image 52
Thorsten Kranz Avatar answered Nov 07 '22 23:11

Thorsten Kranz


I'm finally ended up with converting my data into json as @PavelAnossov suggested and using d3 Tree Layout.

enter image description here

like image 9
lig Avatar answered Nov 07 '22 23:11

lig


There are some great answers already in here, but I believe this one qualifies as "simple" (it uses only python bult-in libraries tkinter and uuid).

It is based on John Gaines Jr.'s answer in another question, modified by Will Ware to support lists, modified by me to also support tuples (runs on python 3).

I've also reorganized it so that you can call the viewer with something as simple as tk_tree_view(data), passing in a dictionary (as in the example at the end).

import uuid
import tkinter as tk
from tkinter import ttk


def j_tree(tree, parent, dic):
    for key in sorted(dic.keys()):
        uid = uuid.uuid4()
        if isinstance(dic[key], dict):
            tree.insert(parent, 'end', uid, text=key)
            j_tree(tree, uid, dic[key])
        elif isinstance(dic[key], tuple):
            tree.insert(parent, 'end', uid, text=str(key) + '()')
            j_tree(tree, uid,
                   dict([(i, x) for i, x in enumerate(dic[key])]))
        elif isinstance(dic[key], list):
            tree.insert(parent, 'end', uid, text=str(key) + '[]')
            j_tree(tree, uid,
                   dict([(i, x) for i, x in enumerate(dic[key])]))
        else:
            value = dic[key]
            if isinstance(value, str):
                value = value.replace(' ', '_')
            tree.insert(parent, 'end', uid, text=key, value=value)


def tk_tree_view(data):
    # Setup the root UI
    root = tk.Tk()
    root.title("tk_tree_view")
    root.columnconfigure(0, weight=1)
    root.rowconfigure(0, weight=1)

    # Setup the Frames
    tree_frame = ttk.Frame(root, padding="3")
    tree_frame.grid(row=0, column=0, sticky=tk.NSEW)

    # Setup the Tree
    tree = ttk.Treeview(tree_frame, columns=('Values'))
    tree.column('Values', width=100, anchor='center')
    tree.heading('Values', text='Values')
    j_tree(tree, '', data)
    tree.pack(fill=tk.BOTH, expand=1)

    # Limit windows minimum dimensions
    root.update_idletasks()
    root.minsize(root.winfo_reqwidth(), root.winfo_reqheight())
    root.mainloop()


if __name__ == "__main__":
    # Setup some test data
    data = {
        "firstName": "John",
        "lastName": "Smith",
        "gender": "male",
        "age": 32,
        "address": {
            "streetAddress": "21 2nd Street",
            "city": "New York",
            "state": "NY",
            "postalCode": "10021"},
        "phoneNumbers": [
            {"type": "home", "number": "212 555-1234"},
            {"type": "fax",
             "number": "646 555-4567",
             "alphabet": [
                 "abc",
                 "def",
                 "ghi"]
             }
        ]}

    # call it with
    tk_tree_view(data)

It looks like this:

enter image description here

like image 9
Lucas Siqueira Avatar answered Nov 07 '22 22:11

Lucas Siqueira