Challenge:
Perform a bitwise XOR on two equal sized buffers. The buffers will be required to be the python str
type since this is traditionally the type for data buffers in python. Return the resultant value as a str
. Do this as fast as possible.
The inputs are two 1 megabyte (2**20 byte) strings.
The challenge is to substantially beat my inefficient algorithm using python or existing third party python modules (relaxed rules: or create your own module.) Marginal increases are useless.
from os import urandom
from numpy import frombuffer,bitwise_xor,byte
def slow_xor(aa,bb):
a=frombuffer(aa,dtype=byte)
b=frombuffer(bb,dtype=byte)
c=bitwise_xor(a,b)
r=c.tostring()
return r
aa=urandom(2**20)
bb=urandom(2**20)
def test_it():
for x in xrange(1000):
slow_xor(aa,bb)
Using scipy.weave
and SSE2 intrinsics gives a marginal improvement. The first invocation is a bit slower since the code needs to be loaded from the disk and cached, subsequent invocations are faster:
import numpy import time from os import urandom from scipy import weave SIZE = 2**20 def faster_slow_xor(aa,bb): b = numpy.fromstring(bb, dtype=numpy.uint64) numpy.bitwise_xor(numpy.frombuffer(aa,dtype=numpy.uint64), b, b) return b.tostring() code = """ const __m128i* pa = (__m128i*)a; const __m128i* pend = (__m128i*)(a + arr_size); __m128i* pb = (__m128i*)b; __m128i xmm1, xmm2; while (pa < pend) { xmm1 = _mm_loadu_si128(pa); // must use unaligned access xmm2 = _mm_load_si128(pb); // numpy will align at 16 byte boundaries _mm_store_si128(pb, _mm_xor_si128(xmm1, xmm2)); ++pa; ++pb; } """ def inline_xor(aa, bb): a = numpy.frombuffer(aa, dtype=numpy.uint64) b = numpy.fromstring(bb, dtype=numpy.uint64) arr_size = a.shape[0] weave.inline(code, ["a", "b", "arr_size"], headers = ['"emmintrin.h"']) return b.tostring()
Taking into account the comments, I revisited the code to find out if the copying could be avoided. Turns out I read the documentation of the string object wrong, so here goes my second try:
support = """ #define ALIGNMENT 16 static void memxor(const char* in1, const char* in2, char* out, ssize_t n) { const char* end = in1 + n; while (in1 < end) { *out = *in1 ^ *in2; ++in1; ++in2; ++out; } } """ code2 = """ PyObject* res = PyString_FromStringAndSize(NULL, real_size); const ssize_t tail = (ssize_t)PyString_AS_STRING(res) % ALIGNMENT; const ssize_t head = (ALIGNMENT - tail) % ALIGNMENT; memxor((const char*)a, (const char*)b, PyString_AS_STRING(res), head); const __m128i* pa = (__m128i*)((char*)a + head); const __m128i* pend = (__m128i*)((char*)a + real_size - tail); const __m128i* pb = (__m128i*)((char*)b + head); __m128i xmm1, xmm2; __m128i* pc = (__m128i*)(PyString_AS_STRING(res) + head); while (pa < pend) { xmm1 = _mm_loadu_si128(pa); xmm2 = _mm_loadu_si128(pb); _mm_stream_si128(pc, _mm_xor_si128(xmm1, xmm2)); ++pa; ++pb; ++pc; } memxor((const char*)pa, (const char*)pb, (char*)pc, tail); return_val = res; Py_DECREF(res); """ def inline_xor_nocopy(aa, bb): real_size = len(aa) a = numpy.frombuffer(aa, dtype=numpy.uint64) b = numpy.frombuffer(bb, dtype=numpy.uint64) return weave.inline(code2, ["a", "b", "real_size"], headers = ['"emmintrin.h"'], support_code = support)
The difference is that the string is allocated inside the C code. It's impossible to have it aligned at a 16-byte-boundary as required by the SSE2 instructions, therefore the unaligned memory regions at the beginning and the end are copied using byte-wise access.
The input data is handed in using numpy arrays anyway, because weave
insists on copying Python str
objects to std::string
s. frombuffer
doesn't copy, so this is fine, but the memory is not aligned at 16 byte, so we need to use _mm_loadu_si128
instead of the faster _mm_load_si128
.
Instead of using _mm_store_si128
, we use _mm_stream_si128
, which will make sure that any writes are streamed to main memory as soon as possible---this way, the output array does not use up valuable cache lines.
As for the timings, the slow_xor
entry in the first edit referred to my improved version (inline bitwise xor, uint64
), I removed that confusion. slow_xor
refers to the code from the original questions. All timings are done for 1000 runs.
slow_xor
: 1.85s (1x)faster_slow_xor
: 1.25s (1.48x)inline_xor
: 0.95s (1.95x)inline_xor_nocopy
: 0.32s (5.78x)The code was compiled using gcc 4.4.3 and I've verified that the compiler actually uses the SSE instructions.
| function | time, usec | ratio | type | |------------------------+------------+-------+--------------| | slow_xor | 2020 | 1.0 | numpy | | xorf_int16 | 1570 | 1.3 | fortran | | xorf_int32 | 1530 | 1.3 | fortran | | xorf_int64 | 1420 | 1.4 | fortran | | faster_slow_xor | 1360 | 1.5 | numpy | | inline_xor | 1280 | 1.6 | C | | cython_xor | 1290 | 1.6 | cython | | xorcpp_inplace (int32) | 440 | 4.6 | pyublas | | cython_xor_vectorised | 325 | 6.2 | cython | | inline_xor_nocopy | 172 | 11.7 | C | | xorcpp | 144 | 14.0 | boost.python | | xorcpp_inplace | 122 | 16.6 | boost.python | #+TBLFM: $3=@2$2/$2;%.1f
To reproduce results, download http://gist.github.com/353005 and type make
(to install dependencies, type: sudo apt-get install build-essential python-numpy python-scipy cython gfortran
, dependencies for Boost.Python
, pyublas
are not included due to they require manual intervention to work)
Where:
slow_xor()
is from the OP's questionfaster_slow_xor()
, inline_xor()
, inline_xor_nocopy()
are from @Torsten Marek's answer cython_xor()
and cython_vectorised()
are from @gnibbler's answer And xor_$type_sig()
are:
! xorf.f90.template subroutine xor_$type_sig(a, b, n, out) implicit none integer, intent(in) :: n $type, intent(in), dimension(n) :: a $type, intent(in), dimension(n) :: b $type, intent(out), dimension(n) :: out integer i forall(i=1:n) out(i) = ieor(a(i), b(i)) end subroutine xor_$type_sig
It is used from Python as follows:
import xorf # extension module generated from xorf.f90.template import numpy as np def xor_strings(a, b, type_sig='int64'): assert len(a) == len(b) a = np.frombuffer(a, dtype=np.dtype(type_sig)) b = np.frombuffer(b, dtype=np.dtype(type_sig)) return getattr(xorf, 'xor_'+type_sig)(a, b).tostring()
xorcpp_inplace()
(Boost.Python, pyublas):xor.cpp:
#include <inttypes.h> #include <algorithm> #include <boost/lambda/lambda.hpp> #include <boost/python.hpp> #include <pyublas/numpy.hpp> namespace { namespace py = boost::python; template<class InputIterator, class InputIterator2, class OutputIterator> void xor_(InputIterator first, InputIterator last, InputIterator2 first2, OutputIterator result) { // `result` migth `first` but not any of the input iterators namespace ll = boost::lambda; (void)std::transform(first, last, first2, result, ll::_1 ^ ll::_2); } template<class T> py::str xorcpp_str_inplace(const py::str& a, py::str& b) { const size_t alignment = std::max(sizeof(T), 16ul); const size_t n = py::len(b); const char* ai = py::extract<const char*>(a); char* bi = py::extract<char*>(b); char* end = bi + n; if (n < 2*alignment) xor_(bi, end, ai, bi); else { assert(n >= 2*alignment); // applying Marek's algorithm to align const ptrdiff_t head = (alignment - ((size_t)bi % alignment))% alignment; const ptrdiff_t tail = (size_t) end % alignment; xor_(bi, bi + head, ai, bi); xor_((const T*)(bi + head), (const T*)(end - tail), (const T*)(ai + head), (T*)(bi + head)); if (tail > 0) xor_(end - tail, end, ai + (n - tail), end - tail); } return b; } template<class Int> pyublas::numpy_vector<Int> xorcpp_pyublas_inplace(pyublas::numpy_vector<Int> a, pyublas::numpy_vector<Int> b) { xor_(b.begin(), b.end(), a.begin(), b.begin()); return b; } } BOOST_PYTHON_MODULE(xorcpp) { py::def("xorcpp_inplace", xorcpp_str_inplace<int64_t>); // for strings py::def("xorcpp_inplace", xorcpp_pyublas_inplace<int32_t>); // for numpy }
It is used from Python as follows:
import os import xorcpp a = os.urandom(2**20) b = os.urandom(2**20) c = xorcpp.xorcpp_inplace(a, b) # it calls xorcpp_str_inplace()
Here are my results for cython
slow_xor 0.456888198853
faster_xor 0.400228977203
cython_xor 0.232881069183
cython_xor_vectorised 0.171468019485
Vectorising in cython shaves about 25% off the for loop on my computer, However more than half the time is spent building the python string (the return
statement) - I don't think the extra copy can be avoided (legally) as the array may contain null bytes.
The illegal way would be to pass in a Python string and mutate it in place and would double the speed of the function.
xor.py
from time import time
from os import urandom
from numpy import frombuffer,bitwise_xor,byte,uint64
import pyximport; pyximport.install()
import xor_
def slow_xor(aa,bb):
a=frombuffer(aa,dtype=byte)
b=frombuffer(bb,dtype=byte)
c=bitwise_xor(a,b)
r=c.tostring()
return r
def faster_xor(aa,bb):
a=frombuffer(aa,dtype=uint64)
b=frombuffer(bb,dtype=uint64)
c=bitwise_xor(a,b)
r=c.tostring()
return r
aa=urandom(2**20)
bb=urandom(2**20)
def test_it():
t=time()
for x in xrange(100):
slow_xor(aa,bb)
print "slow_xor ",time()-t
t=time()
for x in xrange(100):
faster_xor(aa,bb)
print "faster_xor",time()-t
t=time()
for x in xrange(100):
xor_.cython_xor(aa,bb)
print "cython_xor",time()-t
t=time()
for x in xrange(100):
xor_.cython_xor_vectorised(aa,bb)
print "cython_xor_vectorised",time()-t
if __name__=="__main__":
test_it()
xor_.pyx
cdef char c[1048576]
def cython_xor(char *a,char *b):
cdef int i
for i in range(1048576):
c[i]=a[i]^b[i]
return c[:1048576]
def cython_xor_vectorised(char *a,char *b):
cdef int i
for i in range(131094):
(<unsigned long long *>c)[i]=(<unsigned long long *>a)[i]^(<unsigned long long *>b)[i]
return c[:1048576]
An easy speedup is to use a larger 'chunk':
def faster_xor(aa,bb):
a=frombuffer(aa,dtype=uint64)
b=frombuffer(bb,dtype=uint64)
c=bitwise_xor(a,b)
r=c.tostring()
return r
with uint64
also imported from numpy
of course. I timeit
this at 4 milliseconds, vs 6 milliseconds for the byte
version.
Your problem isn't the speed of NumPy's xOr method, but rather with all of the buffering/data type conversions. Personally I suspect that the point of this post may have really been to brag about Python, because what you are doing here is processing THREE GIGABYTES of data in timeframes on par with non-interpreted languages, which are inherently faster.
The below code shows that even on my humble computer Python can xOr "aa" (1MB) and "bb" (1MB) into "c" (1MB) one thousand times (total 3GB) in under two seconds. Seriously, how much more improvement do you want? Especially from an interpreted language! 80% of the time was spent calling "frombuffer" and "tostring". The actual xOr-ing is completed in the other 20% of the time. At 3GB in 2 seconds, you would be hard-pressed to improve upon that substantially even just using memcpy in c.
In case this was a real question, and not just covert bragging about Python, the answer is to code so as to minimize the number, amount and frequency of your type conversions such as "frombuffer" and "tostring". The actual xOr'ing is lightning fast already.
from os import urandom
from numpy import frombuffer,bitwise_xor,byte,uint64
def slow_xor(aa,bb):
a=frombuffer(aa,dtype=byte)
b=frombuffer(bb,dtype=byte)
c=bitwise_xor(a,b)
r=c.tostring()
return r
bb=urandom(2**20)
aa=urandom(2**20)
def test_it():
for x in xrange(1000):
slow_xor(aa,bb)
def test_it2():
a=frombuffer(aa,dtype=uint64)
b=frombuffer(bb,dtype=uint64)
for x in xrange(1000):
c=bitwise_xor(a,b);
r=c.tostring()
test_it()
print 'Slow Complete.'
#6 seconds
test_it2()
print 'Fast Complete.'
#under 2 seconds
Anyway, the "test_it2" above accomplishes exactly the same amount of xOr-ing as "test_it" does, but in 1/5 the time. 5x speed improvement should qualify as "substantial", no?
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With