I have two arrays of data as hight and weight:
import numpy as np, matplotlib.pyplot as plt heights = np.array([50,52,53,54,58,60,62,64,66,67,68,70,72,74,76,55,50,45,65]) weights = np.array([25,50,55,75,80,85,50,65,85,55,45,45,50,75,95,65,50,40,45]) plt.plot(heights,weights,'bo') plt.show()
I want to produce the plot similiar to this:
http://www.sas.com/en_us/software/analytics/stat.html#m=screenshot6
Any ideas is appreciated.
Confidence Interval is a type of estimate computed from the statistics of the observed data which gives a range of values that's likely to contain a population parameter with a particular level of confidence. A confidence interval for the mean is a range of values between which the population mean possibly lies.
Here's what I put together. I tried to closely emulate your screenshot.
Given
import numpy as np import scipy as sp import scipy.stats as stats import matplotlib.pyplot as plt %matplotlib inline # Raw Data heights = np.array([50,52,53,54,58,60,62,64,66,67,68,70,72,74,76,55,50,45,65]) weights = np.array([25,50,55,75,80,85,50,65,85,55,45,45,50,75,95,65,50,40,45])
Two detailed options to plot confidence intervals:
def plot_ci_manual(t, s_err, n, x, x2, y2, ax=None): """Return an axes of confidence bands using a simple approach. Notes ----- .. math:: \left| \: \hat{\mu}_{y|x0} - \mu_{y|x0} \: \right| \; \leq \; T_{n-2}^{.975} \; \hat{\sigma} \; \sqrt{\frac{1}{n}+\frac{(x_0-\bar{x})^2}{\sum_{i=1}^n{(x_i-\bar{x})^2}}} .. math:: \hat{\sigma} = \sqrt{\sum_{i=1}^n{\frac{(y_i-\hat{y})^2}{n-2}}} References ---------- .. [1] M. Duarte. "Curve fitting," Jupyter Notebook. http://nbviewer.ipython.org/github/demotu/BMC/blob/master/notebooks/CurveFitting.ipynb """ if ax is None: ax = plt.gca() ci = t * s_err * np.sqrt(1/n + (x2 - np.mean(x))**2 / np.sum((x - np.mean(x))**2)) ax.fill_between(x2, y2 + ci, y2 - ci, color="#b9cfe7", edgecolor="") return ax def plot_ci_bootstrap(xs, ys, resid, nboot=500, ax=None): """Return an axes of confidence bands using a bootstrap approach. Notes ----- The bootstrap approach iteratively resampling residuals. It plots `nboot` number of straight lines and outlines the shape of a band. The density of overlapping lines indicates improved confidence. Returns ------- ax : axes - Cluster of lines - Upper and Lower bounds (high and low) (optional) Note: sensitive to outliers References ---------- .. [1] J. Stults. "Visualizing Confidence Intervals", Various Consequences. http://www.variousconsequences.com/2010/02/visualizing-confidence-intervals.html """ if ax is None: ax = plt.gca() bootindex = sp.random.randint for _ in range(nboot): resamp_resid = resid[bootindex(0, len(resid) - 1, len(resid))] # Make coeffs of for polys pc = sp.polyfit(xs, ys + resamp_resid, 1) # Plot bootstrap cluster ax.plot(xs, sp.polyval(pc, xs), "b-", linewidth=2, alpha=3.0 / float(nboot)) return ax
Code
# Computations ---------------------------------------------------------------- x = heights y = weights # Modeling with Numpy def equation(a, b): """Return a 1D polynomial.""" return np.polyval(a, b) p, cov = np.polyfit(x, y, 1, cov=True) # parameters and covariance from of the fit of 1-D polynom. y_model = equation(p, x) # model using the fit parameters; NOTE: parameters here are coefficients # Statistics n = weights.size # number of observations m = p.size # number of parameters dof = n - m # degrees of freedom t = stats.t.ppf(0.975, n - m) # used for CI and PI bands # Estimates of Error in Data/Model resid = y - y_model chi2 = np.sum((resid / y_model)**2) # chi-squared; estimates error in data chi2_red = chi2 / dof # reduced chi-squared; measures goodness of fit s_err = np.sqrt(np.sum(resid**2) / dof) # standard deviation of the error # Plotting -------------------------------------------------------------------- fig, ax = plt.subplots(figsize=(8, 6)) # Data ax.plot( x, y, "o", color="#b9cfe7", markersize=8, markeredgewidth=1, markeredgecolor="b", markerfacecolor="None" ) # Fit ax.plot(x, y_model, "-", color="0.1", linewidth=1.5, alpha=0.5, label="Fit") x2 = np.linspace(np.min(x), np.max(x), 100) y2 = equation(p, x2) # Confidence Interval (select one) plot_ci_manual(t, s_err, n, x, x2, y2, ax=ax) #plot_ci_bootstrap(x, y, resid, ax=ax) # Prediction Interval pi = t * s_err * np.sqrt(1 + 1/n + (x2 - np.mean(x))**2 / np.sum((x - np.mean(x))**2)) ax.fill_between(x2, y2 + pi, y2 - pi, color="None", linestyle="--") ax.plot(x2, y2 - pi, "--", color="0.5", label="95% Prediction Limits") ax.plot(x2, y2 + pi, "--", color="0.5") #plt.show()
The following modifications are optional, originally implemented to mimic the OP's desired result.
# Figure Modifications -------------------------------------------------------- # Borders ax.spines["top"].set_color("0.5") ax.spines["bottom"].set_color("0.5") ax.spines["left"].set_color("0.5") ax.spines["right"].set_color("0.5") ax.get_xaxis().set_tick_params(direction="out") ax.get_yaxis().set_tick_params(direction="out") ax.xaxis.tick_bottom() ax.yaxis.tick_left() # Labels plt.title("Fit Plot for Weight", fontsize="14", fontweight="bold") plt.xlabel("Height") plt.ylabel("Weight") plt.xlim(np.min(x) - 1, np.max(x) + 1) # Custom legend handles, labels = ax.get_legend_handles_labels() display = (0, 1) anyArtist = plt.Line2D((0, 1), (0, 0), color="#b9cfe7") # create custom artists legend = plt.legend( [handle for i, handle in enumerate(handles) if i in display] + [anyArtist], [label for i, label in enumerate(labels) if i in display] + ["95% Confidence Limits"], loc=9, bbox_to_anchor=(0, -0.21, 1., 0.102), ncol=3, mode="expand" ) frame = legend.get_frame().set_edgecolor("0.5") # Save Figure plt.tight_layout() plt.savefig("filename.png", bbox_extra_artists=(legend,), bbox_inches="tight") plt.show()
Output
Using plot_ci_manual()
:
Using plot_ci_bootstrap()
:
Hope this helps. Cheers.
Details
I believe that since the legend is outside the figure, it does not show up in matplotblib's popup window. It works fine in Jupyter using %maplotlib inline
.
The primary confidence interval code (plot_ci_manual()
) is adapted from another source producing a plot similar to the OP. You can select a more advanced technique called residual bootstrapping by uncommenting the second option plot_ci_bootstrap()
.
Updates
stats.t.ppf()
accepts the lower tail probability. According to the following resources, t = sp.stats.t.ppf(0.95, n - m)
was corrected to t = sp.stats.t.ppf(0.975, n - m)
to reflect a two-sided 95% t-statistic (or one-sided 97.5% t-statistic). dof=17
y2
was updated to respond more flexibly with a given model (@regeneration).equation
function was added to wrap the model function. Non-linear regressions are possible although not demonstrated. Amend appropriate variables as needed (thanks @PJW).See Also
statsmodels
library.uncertainties
library (install with caution in a separate environment).If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With