I want to create a shared_ptr content-comparison functor to stand in for std::less<T>
in associative containers and std algorithms. I've seen several examples of custom comparators that use the following (or similar) model:
template <typename T>
struct SharedPtrContentsLess {
bool operator()(const boost::shared_ptr<T>& lhs,
const boost::shared_ptr<T> rhs) const {
return std::less<T>(*lhs, *rhs);
//or: return (*lhs) < (*rhs);
}
//defining these here instead of using std::binary_functor (C++11 deprecated)
typedef boost::shared_ptr<T> first_argument_type;
typedef boost::shared_ptr<T> second_argument_type;
typedef bool return_type;
};
But why wouldn't I want to instead extend std::less
? Like so:
template <typename T>
struct SharedPtrContentsLess : public std::less< boost:shared_ptr<T> > {
bool operator()(const boost::shared_ptr<T>& lhs,
const boost::shared_ptr<T> rhs) const {
return std::less<T>(*lhs, *rhs);
}
};
Does this buy me anything at all?
I would think this gets me the typedef
s for free, as though I was extending the deprecated std::binary_function
. In C++03, I actually would be extending it through std::less
. However, this would also be portable from C++03 to C++11/14 and even C++17 when std::binary_function
will be removed, as it just follows the changes in std::less
.
I've read a bunch of answers on StackOverflow regarding std::less
use, custom comparison functors, and even some of the Standard specs and proposals. I see specializations of std::less
and guidance not to extend STL containers, but I can't seem to find any examples of extending std::less
or guidance against it. Am I missing an obvious reason not to do this?
EDIT: Removed C++11 tag, as it is causing confusion to the answerers. I am hoping to get forward-portability, but C++03 is required. If you provide a C++11-only answer for others to use (totally fine), please note that.
You can create a reusable template towards any dereferencable object (i.e. any (smart) pointer) by simply forwarding the call to std::less or any other comparable object.
// c++11
template<template<class> Op, class T> struct deref_mixin;
template<template<class> Op, class T>
struct deref_mixin {
auto operator()(const T &l, const T &r) const
-> decltype(std::declval<Op<T>>()(*l, *r)) {
return Op<T>{}(*l, *r);
}
};
template<template<class> Op>
struct deref_mixin<Op, void> {
template<class T, class U>
auto operator()(const T &l, const U &r) const
-> decltype(std::declval<Op<T>>()(*l, *r)) {
return Op<void>{}(*l, *r);
}
};
template<class T> using less_deref = deref_mixin<std::less, T>;
template<class T> using greater_deref = deref_mixin<std::greater, T>;
template<class T> using my_comparator_deref = deref_mixin<my_comparator, T>;
// c++03
template<template<class> Op, class T>
struct deref_mixin {
bool operator()(const T &l, const T &r) const {
Op<T> op;
return op(*l, *r);
}
};
// Technically, the void template partial specialization isn't defined in c++03, but it should have been :)
template<template<class> Op>
struct deref_mixin<Op, void> {
template<class T, class U>
bool operator()(const T &l, const U &r) const {
Op<void> op;
return op(*l, *r);
}
};
template<class T> struct less_deref : deref_mixin<std::less, T> {};
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With