I'm working through "Learn Prolog now" online book for fun.
I'm trying to write a predicate that goes through each member of a list and adds one to it, using accumulators. I have already done it easily without tail recursion.
addone([],[]).
addone([X|Xs],[Y|Ys]) :- Y is X+1, addone(Xs,Ys).
But I have read that it is better to avoid this type of recursion for performance reasons. Is this true? Is it considered 'good practice' to use tail recursion always? Will it be worth the effort to use accumulators to get into a good habit?
I have tried to change this example into using accumulators, but it reverses the list. How can I avoid this?
accAddOne([X|Xs],Acc,Result) :- Xnew is X+1, accAddOne(Xs,[Xnew|Acc],Result).
accAddOne([],A,A).
addone(List,Result) :- accAddOne(List,[],Result).
No. Go for readability. Many computations are better expressed as recursive (tail or otherwise) functions. The only other reason to avoid them would be if your compiler does not do tail call optimizations and you expect you might blow the call stack.
The tail recursion is better than non-tail recursion. As there is no task left after the recursive call, it will be easier for the compiler to optimize the code. When one function is called, its address is stored inside the stack. So if it is tail recursion, then storing addresses into stack is not needed.
Tail call elimination reduces the space complexity of recursion from O(N) to O(1). As function call is eliminated, no new stack frames are created and the function is executed in constant memory space.
This is tail-recursive because the recursive call's return value is returned directly. Tail-recursive functions are important because they can be optimized into loop form: Rather than make a whole new function call, we can simply alter the parameters in memory and jump back to the top of the function.
Short answer: Tail recursion is desirable, but don't over-emphasize it.
Your original program is as tail recursive as you can get in Prolog. But there are more important issues: Correctness and termination.
In fact, many implementations are more than willing to sacrifice tail-recursiveness for other properties they consider more important. For example steadfastness.
But your attempted optimization has some point. At least from a historical perspective.
Back in the 1970s, the major AI language was LISP. And the corresponding definition would have been
(defun addone (xs) (cond ((null xs) nil) (t (cons (+ 1 (car xs)) (addone (cdr xs))))))
which is not directly tail-recursive: The reason is the cons
: In implementations of that time, its arguments were evaluated first, only then, the cons
could be executed. So rewriting this as you have indicated (and reversing the resulting list) was a possible optimization technique.
In Prolog, however, you can create the cons prior to knowing the actual values, thanks to logic variables. So many programs that were not tail-recursive in LISP, translated to tail-recursive programs in Prolog.
The repercussions of this can still be found in many Prolog textbooks.
Your addOne procedure already is tail recursive.
There are no choice points between the head and the last recursive call, because is/2 is deterministic.
Accumulators are sometime added to allow tail recursion, the simpler example I can think of is reverse/2. Here is a naive reverse (nreverse/2), non tail recursive
nreverse([], []).
nreverse([X|Xs], R) :- nreverse(Xs, Rs), append(Rs, [X], R).
if we add an accumulator
reverse(L, R) :- reverse(L, [], R).
reverse([], R, R).
reverse([X|Xs], A, R) :- reverse(Xs, [X|A], R).
now reverse/3 is tail recursive: the recursive call is the last one, and no choice point is left.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With