I want to find the shortest path between two vertices with an additional constraint : max n vertices can be visited. The graph is directed, connected, non negative weights and may contain cycles.
Example:
So far I've implemented Djikstras algorithm to get the simple shortest path, and my idea was to keep a counter of the current vertices visited, if it exceeds n it takes one or more steps back and tries with another path.. but as far as I know Djikstras can't be used for backtracking as explained here.
Another idea is somehow to store every path between every node in a table. But I'm not really sure how Djikstra can discover the path 0->2 with weight 18 since it is not really a shortest path...
Does anyone have any ideas how to tackle this problem?
Divided each vertices into n
vertices, that is, for vertices u
, we create n
vertices expressed as (u, 1) ... (u, n)
, the second number shows the number of steps to this vertices. For each edge from u to v, we create an edge from (u, i) to (v, i+1) where 1<=i<=n-1
in new graph. Now if you want to calculate the shortest path between u and v with n, just do Dijkstra from (u, 1), then your answer is min(result (v, i) | 1<=i<=n)
The total number of vertices can be n*n, so the complexity is about O(n^2*log(n^2))
Let COST_TO(v,n) be the total weight of the minimum path to vertex v with n edges or less.
When n=0, the answer is easy:
for all v, COST_T(v,0) = 0 if v is the source vertex and infinity otherwise
For n>0, COST_TO(v,n) is the minimum of COST_TO(v,n-1) and all COST_TO(w,n-1)+WEIGHT(w,v), where there is an edge from w to v
so, for n = 0 to N, keep track of all the vertices with COST_(v,n) < infinity along with their costs, and calculate the costs for n from the values for n-1.
At the same time you can keep track of the minimum weight path to each v -- every time you update the cost to v with the edge rule, the new path to v is the path to w plus that edge. A reverse-singly-linked list is handy for this.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With