I have a image in a 2d numpy array. I want to shift the image by an X and Y offset and want the rest of the frame padded with zeros. I have seen discussions about the 'roll' function but that only works in 1 axis. (unless someone can point me to a 2d version with padding). I have tried slicing but I run into trouble when shifting offsets have all possible directions. I don't want to navigate through all X Y offset +/- permutations. Is there a simple general solution? I have the below code which works nice for X-offset=+100. But it crashes for X-offset=-100.
Thanks, Gert
import matplotlib.pyplot as plt
import scipy.misc as msc
import numpy as np
lena = msc.lena()
lena.dtype
(imx,imy)= lena.shape
ox= 100
oy= 20
shift_lena = np.zeros((imx,imy))
shift_lena[0:imy-oy,0:imx-ox] = lena[oy:,ox:]
shift_lena_m = shift_lena.astype(np.int64)
shift_lena_m.dtype
plt.figure(figsize=(10, 3.6))
plt.subplot(131)
plt.imshow(lena, cmap=plt.cm.gray)
plt.subplot(132)
plt.imshow(shift_lena_m, cmap=plt.cm.gray)
plt.subplots_adjust(wspace=0, hspace=0., top=0.99, bottom=0.01, left=0.05, right=0.99)
plt.show()
You can use roll function to circular shift x and y and then zerofill the offset
def shift_image(X, dx, dy):
X = np.roll(X, dy, axis=0)
X = np.roll(X, dx, axis=1)
if dy>0:
X[:dy, :] = 0
elif dy<0:
X[dy:, :] = 0
if dx>0:
X[:, :dx] = 0
elif dx<0:
X[:, dx:] = 0
return X
There's no other way, as to handle negative and positive shifts accordingly:
non = lambda s: s if s<0 else None
mom = lambda s: max(0,s)
ox, oy = 100, 20
shift_lena = numpy.zeros_like(lena)
shift_lena[mom(oy):non(oy), mom(ox):non(ox)] = lena[mom(-oy):non(-oy), mom(-ox):non(-ox)]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With