I'm setting up a Learning Rate Scheduler in Keras, using history loss as an updater to self.model.optimizer.lr, but the value on self.model.optimizer.lr does not get inserted in the SGD optimizer and the optimizer is using the dafault learning rate. The code is:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.preprocessing import StandardScaler
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = []
self.model.optimizer.lr=3
def on_batch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
self.model.optimizer.lr=lr-10000*self.losses[-1]
def base_model():
model=Sequential()
model.add(Dense(4, input_dim=2, init='uniform'))
model.add(Dense(1, init='uniform'))
sgd = SGD(decay=2e-5, momentum=0.9, nesterov=True)
model.compile(loss='mean_squared_error',optimizer=sgd,metrics['mean_absolute_error'])
return model
history=LossHistory()
estimator = KerasRegressor(build_fn=base_model,nb_epoch=10,batch_size=16,verbose=2,callbacks=[history])
estimator.fit(X_train,y_train,callbacks=[history])
res = estimator.predict(X_test)
Everything works fine using Keras as a regressor for continuous variables, But I want to reach a smaller derivative by updating the optimizer learning rate.
keras.callbacks.LearningRateScheduler(schedule, verbose=0)
In new Keras API you can use more general version of schedule
function which takes two arguments epoch
and lr
.
From docs:
schedule: a function that takes an epoch index as input (integer, indexed from 0) and current learning rate and returns a new learning rate as output (float).
From sources:
try: # new API
lr = self.schedule(epoch, lr)
except TypeError: # old API for backward compatibility
lr = self.schedule(epoch)
if not isinstance(lr, (float, np.float32, np.float64)):
raise ValueError('The output of the "schedule" function '
'should be float.')
So your function could be:
def lr_scheduler(epoch, lr):
decay_rate = 0.1
decay_step = 90
if epoch % decay_step == 0 and epoch:
return lr * decay_rate
return lr
callbacks = [
keras.callbacks.LearningRateScheduler(lr_scheduler, verbose=1)
]
model.fit(callbacks=callbacks, ... )
Thanks, I found an alternative solution, as I'm not using GPU:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.callbacks import LearningRateScheduler
sd=[]
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = [1,1]
def on_epoch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
sd.append(step_decay(len(self.losses)))
print('lr:', step_decay(len(self.losses)))
epochs = 50
learning_rate = 0.1
decay_rate = 5e-6
momentum = 0.9
model=Sequential()
model.add(Dense(4, input_dim=2, init='uniform'))
model.add(Dense(1, init='uniform'))
sgd = SGD(lr=learning_rate,momentum=momentum, decay=decay_rate, nesterov=False)
model.compile(loss='mean_squared_error',optimizer=sgd,metrics=['mean_absolute_error'])
def step_decay(losses):
if float(2*np.sqrt(np.array(history.losses[-1])))<0.3:
lrate=0.01*1/(1+0.1*len(history.losses))
momentum=0.8
decay_rate=2e-6
return lrate
else:
lrate=0.1
return lrate
history=LossHistory()
lrate=LearningRateScheduler(step_decay)
model.fit(X_train,y_train,nb_epoch=epochs,callbacks=[history,lrate],verbose=2)
model.predict(X_test)
The output is (lr is learning rate):
Epoch 41/50
lr: 0.0018867924528301887
0s - loss: 0.0126 - mean_absolute_error: 0.0785
Epoch 42/50
lr: 0.0018518518518518517
0s - loss: 0.0125 - mean_absolute_error: 0.0780
Epoch 43/50
lr: 0.0018181818181818182
0s - loss: 0.0125 - mean_absolute_error: 0.0775
Epoch 44/50
lr: 0.0017857142857142857
0s - loss: 0.0126 - mean_absolute_error: 0.0785
Epoch 45/50
lr: 0.0017543859649122807
0s - loss: 0.0126 - mean_absolute_error: 0.0773
And this is what happens to Learning Rate over the epochs:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With