Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Setting default number format when writing to Excel from Pandas

I'm looking to set the default number format when writing to Excel from a Pandas dataframe. Is this possible?

I can set the default date/datetime_format with the following, but couldn't find a way to set the default number format.

writer = pd.ExcelWriter(f'{file_variable}.xlsx', engine='xlsxwriter',datetime_format='MM/DD/YYYY')

Otherwise, I assume I'm going to have to assign worksheets to variables and loop through the rows for the specified columns to set the number format.

like image 994
ChrisG Avatar asked Jun 27 '18 17:06

ChrisG


People also ask

How do you write to an excel file using pandas?

You can write any data (lists, strings, numbers etc) to Excel, by first converting it into a Pandas DataFrame and then writing the DataFrame to Excel. To export a Pandas DataFrame as an Excel file (extension: . xlsx, . xls), use the to_excel() method.

How do I write pandas DataFrame to xlsx?

Use pandas to_excel() function to write a DataFrame to an excel sheet with extension . xlsx. By default it writes a single DataFrame to an excel file, you can also write multiple sheets by using an ExcelWriter object with a target file name, and sheet name to write to.


1 Answers

I got this format the floats to 1 decimal place.

data = {'A Prime': {0: 3.26,  1: 3.24,  2: 3.22,  3: 3.2,  4: 3.18,  5: 3.16,
  6: 3.14,  7: 1.52,  8: 1.5,  9: 1.48,  10: 1.46,  11: 1.44,  12: 1.42},
 'B': {0: 0.16608,  1: 0.16575,  2: 0.1654,  3: 0.16505999999999998,  4: 0.1647,  5: 0.16434,  6: 0.16398,  7: 0.10759,  8: 0.10687,  9: 0.10614000000000001,
  10: 0.10540999999999999,  11: 0.10469,  12: 0.10396}, 'Proto Name': {0: 'Alpha',
  1: 'Alpha',  2: 'Alpha', 3: 'Alpha',  4: 'Alpha',  5: 'Alpha',  6: 'Alpha',  7: 'Bravo',  8: 'Bravo',  9: 'Bravo',  10: 'Bravo',  11: 'Bravo',  12: 'Bravo'}}

import pandas as pd
df = pd.DataFrame(data)


    A Prime B       Proto Name
0   3.26    0.16608 Alpha
1   3.24    0.16575 Alpha
2   3.22    0.16540 Alpha
3   3.20    0.16506 Alpha
4   3.18    0.16470 Alpha
5   3.16    0.16434 Alpha
6   3.14    0.16398 Alpha
7   1.52    0.10759 Bravo
8   1.50    0.10687 Bravo
9   1.48    0.10614 Bravo
10  1.46    0.10541 Bravo
11  1.44    0.10469 Bravo
12  1.42    0.10396 Bravo

writer = pd.ExcelWriter(r'c:\temp\output.xlsx')
# This method will truncate the data past the first decimal point
df.to_excel(writer,'Sheet1',float_format = "%0.1f")
writer.save()

enter image description here

but that alas is not perhaps all cases - no joy with say larger numbers and thousands separator

df.to_excel(writer,'Sheet1',float_format = ":,")

However the following seems to work

data = {'A Prime': {0: 326000,  1: 3240000}}
df = pd.DataFrame(data)

    A Prime
0   326000
1   3240000

writer = pd.ExcelWriter(r'c:\temp\output.xlsx')
df.to_excel(writer,'Sheet1')
workbook  = writer.book
worksheet = writer.sheets['Sheet1']
format1 = workbook.add_format({'num_format': '#,##0.00'})
worksheet.set_column('B', 18, format1)
#Alternatively, you could specify a range of columns with 'B:D' and 18 sets the column width
writer.save()

enter image description here

All taken from here: http://xlsxwriter.readthedocs.io/working_with_pandas.html

like image 175
Dickster Avatar answered Oct 03 '22 12:10

Dickster