I have recently found the great card came - SET. Briefly, there are 81 cards with the four features: symbol (oval, squiggle or diamond), color (red, purple or green), number (one, two or three) and shading (solid, striped or open). The task is to locate (from selected 12 cards) a SET of 3 cards, in which each of the four features is either all the same on each card or all different on each card (no 2+1 combination).
I've coded it in MATLAB to find a solution and to estimate odds of having a set in randomly selected cards.
Here is my code to estimate odds:
%% initialization
K = 12; % cards to draw
NF = 4; % number of features (usually 3 or 4)
setallcards = unique(nchoosek(repmat(1:3,1,NF),NF),'rows'); % all cards: rows - cards, columns - features
setallcomb = nchoosek(1:K,3); % index of all combinations of K cards by 3
%% test
tic
NIter=1e2; % number of test iterations
setexists = 0; % test results holder
% C = progress('init'); % if you have progress function from FileExchange
for d = 1:NIter
% C = progress(C,d/NIter);
% cards for current test
setdrawncardidx = randi(size(setallcards,1),K,1);
setdrawncards = setallcards(setdrawncardidx,:);
% find all sets in current test iteration
for setcombidx = 1:size(setallcomb,1)
setcomb = setdrawncards(setallcomb(setcombidx,:),:);
if all(arrayfun(@(x) numel(unique(setcomb(:,x))), 1:NF)~=2) % test one combination
setexists = setexists + 1;
break % to find only the first set
end
end
end
fprintf('Set:NoSet = %g:%g = %g:1\n', setexists, NIter-setexists, setexists/(NIter-setexists))
toc
100-1000 iterations are fast, but be careful with more. One million iterations takes about 15 hours on my home computer. Anyway, with 12 cards and 4 features I've got around 13:1 of having a set. This is actually a problem. The instruction book said this number should be 33:1. And it was recently confirmed by Peter Norvig. He provides the Python code, but I didn't test it yet.
So can you find an error? Any comments on performance improvement are welcome.
I tackled the problem writing my own implementation before looking at your code. My first attempt was very similar to what you already had :)
%# some parameters
NUM_ITER = 100000; %# number of simulations to run
DRAW_SZ = 12; %# number of cards we are dealing
SET_SZ = 3; %# number of cards in a set
FEAT_NUM = 4; %# number of features (symbol,color,number,shading)
FEAT_SZ = 3; %# number of values per feature (eg: red/purple/green, ...)
%# cards features
features = {
'oval' 'squiggle' 'diamond' ; %# symbol
'red' 'purple' 'green' ; %# color
'one' 'two' 'three' ; %# number
'solid' 'striped' 'open' %# shading
};
fIdx = arrayfun(@(k) grp2idx(features(k,:)), 1:FEAT_NUM, 'UniformOutput',0);
%# list of all cards. Each card: [symbol,color,number,shading]
[W X Y Z] = ndgrid(fIdx{:});
cards = [W(:) X(:) Y(:) Z(:)];
%# all possible sets: choose 3 from 12
setsInd = nchoosek(1:DRAW_SZ,SET_SZ);
%# count number of valid sets in random draws of 12 cards
counterValidSet = 0;
for i=1:NUM_ITER
%# pick 12 cards
ord = randperm( size(cards,1) );
cardsDrawn = cards(ord(1:DRAW_SZ),:);
%# check for valid sets: features are all the same or all different
for s=1:size(setsInd,1)
%# set of 3 cards
set = cardsDrawn(setsInd(s,:),:);
%# check if set is valid
count = arrayfun(@(k) numel(unique(set(:,k))), 1:FEAT_NUM);
isValid = (count==1|count==3);
%# increment counter
if isValid
counterValidSet = counterValidSet + 1;
break %# break early if found valid set among candidates
end
end
end
%# ratio of found-to-notfound
fprintf('Size=%d, Set=%d, NoSet=%d, Set:NoSet=%g\n', ...
DRAW_SZ, counterValidSet, (NUM_ITER-counterValidSet), ...
counterValidSet/(NUM_ITER-counterValidSet))
After using the Profiler to discover hot spots, some improvement can be made mainly by early-break'ing out of loops when possible. The main bottleneck is the call to the UNIQUE function. Those two lines above where we check for valid sets can be rewritten as:
%# check if set is valid
isValid = true;
for k=1:FEAT_NUM
count = numel(unique(set(:,k)));
if count~=1 && count~=3
isValid = false;
break %# break early if one of the features doesnt meet conditions
end
end
Unfortunately, the simulation is still slow for larger simulation. Thus my next solution is a vectorized version, where for each iteration, we build a single matrix of all possible sets of 3 cards from the hand of 12 drawn cards. For all these candidate sets, we use logical vectors to indicate what feature is present, thus avoiding the calls to UNIQUE/NUMEL (we want features all the same or all different on each card of the set).
I admit that the code is now less readable and harder to follow (thus I posted both versions for comparison). The reason being that I tried to optimize the code as much as possible, so that each iteration-loop is fully vectorized. Here is the final code:
%# some parameters
NUM_ITER = 100000; %# number of simulations to run
DRAW_SZ = 12; %# number of cards we are dealing
SET_SZ = 3; %# number of cards in a set
FEAT_NUM = 4; %# number of features (symbol,color,number,shading)
FEAT_SZ = 3; %# number of values per feature (eg: red/purple/green, ...)
%# cards features
features = {
'oval' 'squiggle' 'diamond' ; %# symbol
'red' 'purple' 'green' ; %# color
'one' 'two' 'three' ; %# number
'solid' 'striped' 'open' %# shading
};
fIdx = arrayfun(@(k) grp2idx(features(k,:)), 1:FEAT_NUM, 'UniformOutput',0);
%# list of all cards. Each card: [symbol,color,number,shading]
[W X Y Z] = ndgrid(fIdx{:});
cards = [W(:) X(:) Y(:) Z(:)];
%# all possible sets: choose 3 from 12
setsInd = nchoosek(1:DRAW_SZ,SET_SZ);
%# optimizations: some calculations taken out of the loop
ss = setsInd(:);
set_sz2 = numel(ss)*FEAT_NUM/SET_SZ;
col = repmat(1:set_sz2,SET_SZ,1);
col = FEAT_SZ.*(col(:)-1);
M = false(FEAT_SZ,set_sz2);
%# progress indication
%#hWait = waitbar(0./NUM_ITER, 'Simulation...');
%# count number of valid sets in random draws of 12 cards
counterValidSet = 0;
for i=1:NUM_ITER
%# update progress
%#waitbar(i./NUM_ITER, hWait);
%# pick 12 cards
ord = randperm( size(cards,1) );
cardsDrawn = cards(ord(1:DRAW_SZ),:);
%# put all possible sets of 3 cards next to each other
set = reshape(cardsDrawn(ss,:)',[],SET_SZ)';
set = set(:);
%# check for valid sets: features are all the same or all different
M(:) = false; %# if using PARFOR, it will complain about this
M(set+col) = true;
isValid = all(reshape(sum(M)~=2,FEAT_NUM,[]));
%# increment counter if there is at least one valid set in all candidates
if any(isValid)
counterValidSet = counterValidSet + 1;
end
end
%# ratio of found-to-notfound
fprintf('Size=%d, Set=%d, NoSet=%d, Set:NoSet=%g\n', ...
DRAW_SZ, counterValidSet, (NUM_ITER-counterValidSet), ...
counterValidSet/(NUM_ITER-counterValidSet))
%# close progress bar
%#close(hWait)
If you have the Parallel Processing Toolbox, you can easily replace the plain FOR-loop with a parallel PARFOR (you might want to move the initialization of the matrix M
inside the loop again: replace M(:) = false;
with M = false(FEAT_SZ,set_sz2);
)
Here are some sample outputs of 50000 simulations (PARFOR used with a pool of 2 local instances):
» tic, SET_game2, toc
Size=12, Set=48376, NoSet=1624, Set:NoSet=29.7882
Elapsed time is 5.653933 seconds.
» tic, SET_game2, toc
Size=15, Set=49981, NoSet=19, Set:NoSet=2630.58
Elapsed time is 9.414917 seconds.
And with a million iterations (PARFOR for 12, no-PARFOR for 15):
» tic, SET_game2, toc
Size=12, Set=967516, NoSet=32484, Set:NoSet=29.7844
Elapsed time is 110.719903 seconds.
» tic, SET_game2, toc
Size=15, Set=999630, NoSet=370, Set:NoSet=2701.7
Elapsed time is 372.110412 seconds.
The odds ratio agree with the results reported by Peter Norvig.
Here's a vectorized version, where 1M hands can be calculated in about a minute. I got about 28:1 with it, so there might still be something a little off with finding 'all different' sets. My guess is that this is what your solution has trouble with, as well.
%# initialization
K = 12; %# cards to draw
NF = 4; %# number of features (this is hard-coded to 4)
nIter = 100000; %# number of iterations
%# each card has four features. This means that a card can be represented
%# by a coordinate in 4D space. A set is a full row, column, etc in 4D
%# space. We can even parallelize the iterations, at least as long as we
%# have RAM (each hand costs 81 bytes)
%# make card space - one dimension per feature, plus one for the iterations
cardSpace = false(3,3,3,3,nIter);
%# To draw cards, we put K trues into each cardSpace. I can't think of a
%# good, fast way to draw exactly K cards that doesn't involve calling
%# unique
for i=1:nIter
shuffle = randperm(81) + (i-1) * 81;
cardSpace(shuffle(1:K)) = true;
end
%# to test, all we have to do is check whether there is any row, column,
%# with all 1's
isEqual = squeeze(any(any(any(all(cardSpace,1),2),3),4) | ...
any(any(any(all(cardSpace,2),1),3),4) | ...
any(any(any(all(cardSpace,3),2),1),4) | ...
any(any(any(all(cardSpace,4),2),3),1));
%# to get a set of 3 cards where all symbols are different, we require that
%# no 'sub-volume' is completely empty - there may be something wrong with this
%# but since my test looked ok, I'm not going to investigate on Friday night
isDifferent = squeeze(~any(all(all(all(~cardSpace,1),2),3),4) & ...
~any(all(all(all(~cardSpace,1),2),4),3) & ...
~any(all(all(all(~cardSpace,1),3),4),2) & ...
~any(all(all(all(~cardSpace,4),2),3),1));
isSet = isEqual | isDifferent;
%# find the odds
fprintf('odds are %5.2f:1\n',sum(isSet)/(nIter-sum(isSet)))
I found my error. Thanks Jonas for the hint with RANDPERM.
I used RANDI to randomly drawn K cards, but there is about 50% chance to get repeats even in 12 cards. When I substituted this line with randperm, I've got 33.8:1 with 10000 iterations, very close to the number in instruction book.
setdrawncardidx = randperm(81);
setdrawncardidx = setdrawncardidx(1:K);
Anyway, it would be interesting to see other approaches to the problem.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With