Given the below dataframe:
import pandas as pd
import numpy as np
a = np.arange(16).reshape(4, 4)
df = pd.DataFrame(data=a, columns=['a','b','c','d'])
I'd like to produce the following result:
df([[ NaN, 1, 2, 3],
[ NaN, NaN, 6, 7],
[ NaN, NaN, NaN, 11],
[ NaN, NaN, NaN, NaN]])
So far I've tried using np.tril_indicies
, but it only works with a df turned back into a numpy array, and it only works for integer assignments (not np.nan):
il1 = np.tril_indices(4)
a[il1] = 0
gives:
array([[ 0, 1, 2, 3],
[ 0, 0, 6, 7],
[ 0, 0, 0, 11],
[ 0, 0, 0, 0]])
...which is almost what I'm looking for, but barfs at assigning NaN:
ValueError: cannot convert float NaN to integer
while:
df[il1] = 0
gives:
TypeError: unhashable type: 'numpy.ndarray'
So if I want to fill the bottom triangle of a dataframe with NaN, does it 1) have to be a numpy array, or can I do this with pandas directly? And 2) Is there a way to fill bottom triangle with NaN rather than using numpy.fill_diagonal
and incrementing the offset row by row down the whole DataFrame?
Another failed solution: Filling the diagonal of np array with zeros, then masking on zero and reassigning to np.nan. It converts zero values above the diagonal as NaN when they should be preserved as zero!
You need cast to float
a
, because type
of NaN
is float
:
import numpy as np
a = np.arange(16).reshape(4, 4).astype(float)
print (a)
[[ 0. 1. 2. 3.]
[ 4. 5. 6. 7.]
[ 8. 9. 10. 11.]
[ 12. 13. 14. 15.]]
il1 = np.tril_indices(4)
a[il1] = np.nan
print (a)
[[ nan 1. 2. 3.]
[ nan nan 6. 7.]
[ nan nan nan 11.]
[ nan nan nan nan]]
df = pd.DataFrame(data=a, columns=['a','b','c','d'])
print (df)
a b c d
0 NaN 1.0 2.0 3.0
1 NaN NaN 6.0 7.0
2 NaN NaN NaN 11.0
3 NaN NaN NaN NaN
An approach using np.where
-
m,n = df.shape
df[:] = np.where(np.arange(m)[:,None] >= np.arange(n),np.nan,df)
Sample run -
In [93]: df
Out[93]:
a b c d
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15
In [94]: m,n = df.shape
In [95]: df[:] = np.where(np.arange(m)[:,None] >= np.arange(n),np.nan,df)
In [96]: df
Out[96]:
a b c d
0 NaN 1.0 2.0 3.0
1 NaN NaN 6.0 7.0
2 NaN NaN NaN 11.0
3 NaN NaN NaN NaN
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With