Right now we are successfully able to serve models using Tensorflow Serving. We have used following method to export the model and host it with Tensorflow Serving.
------------
For exporting
------------------
from tensorflow.contrib.session_bundle import exporter
K.set_learning_phase(0)
export_path = ... # where to save the exported graph
export_version = ... # version number (integer)
saver = tf.train.Saver(sharded=True)
model_exporter = exporter.Exporter(saver)
signature = exporter.classification_signature(input_tensor=model.input,
scores_tensor=model.output)
model_exporter.init(sess.graph.as_graph_def(),
default_graph_signature=signature)
model_exporter.export(export_path, tf.constant(export_version), sess)
--------------------------------------
For hosting
-----------------------------------------------
bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server --port=9000 --model_name=default --model_base_path=/serving/models
However our issue is - we want keras to be integrated with Tensorflow serving. We would like to serve the model through Tensorflow serving using Keras. The reason we would like to have that is because - in our architecture we follow couple of different ways to train our model like deeplearning4j + Keras , Tensorflow + Keras, but for serving we would like to use only one servable engine that's Tensorflow Serving. We don't see any straight forward way to achieve that. Any comments ?
Thank you.
Keras and TensorFlow are open source Python libraries for working with neural networks, creating machine learning models and performing deep learning. Because Keras is a high level API for TensorFlow, they are installed together.
Both Keras and TensorFlow have training models, so there is no difference there. In terms of speed, TensorFlow is made to be fast and operate at a high performance. Therefore, it is much easier and more effective to scale TensorFlow. For Keras, while being written for simplicity it did lose some speed and performance.
Very recently TensorFlow changed the way it exports the model, so the majority of the tutorials available on web are outdated. I honestly don't know how deeplearning4j works, but I use Keras quite often. I managed to create a simple example that I already posted on this issue in TensorFlow Serving Github.
I'm not sure whether this will help you, but I'd like to share how I did and maybe it will give you some insights. My first trial prior to creating my custom model was to use a trained model available on Keras such as VGG19. I did this as follows.
Model creation
import keras.backend as K
from keras.applications import VGG19
from keras.models import Model
# very important to do this as a first thing
K.set_learning_phase(0)
model = VGG19(include_top=True, weights='imagenet')
# The creation of a new model might be optional depending on the goal
config = model.get_config()
weights = model.get_weights()
new_model = Model.from_config(config)
new_model.set_weights(weights)
Exporting the model
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import utils
from tensorflow.python.saved_model import tag_constants, signature_constants
from tensorflow.python.saved_model.signature_def_utils_impl import build_signature_def, predict_signature_def
from tensorflow.contrib.session_bundle import exporter
export_path = 'folder_to_export'
builder = saved_model_builder.SavedModelBuilder(export_path)
signature = predict_signature_def(inputs={'images': new_model.input},
outputs={'scores': new_model.output})
with K.get_session() as sess:
builder.add_meta_graph_and_variables(sess=sess,
tags=[tag_constants.SERVING],
signature_def_map={'predict': signature})
builder.save()
Some side notes
With respect to serving different models within the same server, I think that something similar to the creation of a model_config_file might help you. To do so, you can create a config file similar to this:
model_config_list: {
config: {
name: "my_model_1",
base_path: "/tmp/model_1",
model_platform: "tensorflow"
},
config: {
name: "my_model_2",
base_path: "/tmp/model_2",
model_platform: "tensorflow"
}
}
Finally, you can run the client like this:
bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server --port=9000 --config_file=model_config.conf
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With