I developed this simple kernel module, which emulates a serial port by using a FIFO queue and a timer (read from hardware : out from the queue, write to hardware : insert in the queue).
Source code is shown next.
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/module.h>
#define TINY_SERIAL_DEBUG
#define pr_fmt(fmt) "tiny_serial: " fmt
#if defined(TINY_SERIAL_DEBUG)
#define DBG(fmt, ...) printk(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__)
#else
#define DBG(fmt, ...) no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__)
#endif
#define DRIVER_AUTHOR "Me Me <[email protected]>"
#define DRIVER_DESC "Tiny serial driver"
/* Module information */
MODULE_AUTHOR( DRIVER_AUTHOR );
MODULE_DESCRIPTION( DRIVER_DESC );
MODULE_LICENSE("GPL");
#define DELAY_TIME 100// HZ * 2 /* 2 seconds per character */
#define TINY_DATA_CHARACTER 't'
#define TINY_SERIAL_MAJOR 240 //240 /* experimental range */
#define TINY_SERIAL_MINORS 1 //1 /* only have one minor */
#define UART_NR 1 /* only use one port */
#define TINY_SERIAL_NAME "ttytiny"
#define MY_NAME TINY_SERIAL_NAME
#define BUF_SIZE 4096
static char buf[BUF_SIZE];
static char *read_ptr;
static char *write_ptr;
static struct timer_list *timer;
static void serial_out(char data)
{
*write_ptr = data;
write_ptr++;
if (write_ptr >= buf + BUF_SIZE)
write_ptr = buf;
}
static void serial_in(char *data)
{
if (read_ptr == NULL) {
DBG("pointer is null !\n");
}
if (read_ptr && (read_ptr != write_ptr)) {
*data = *read_ptr;
read_ptr++;
if(read_ptr >= buf + BUF_SIZE)
read_ptr = buf;
}
}
static void tiny_stop_tx(struct uart_port *port)
{
DBG("tiny_stop_tx()\n");
}
static void tiny_stop_rx(struct uart_port *port)
{
DBG("tiny_stop_rx()\n");
}
static void tiny_enable_ms(struct uart_port *port)
{
DBG("tiny_enable_ms()\n");
}
static void tiny_rx_chars(struct uart_port *port, int size)
{
int i = 0;
char byte;
char flag;
struct tty_port *tty = &port->state->port;
if (size <= 0) {
return;
}
while (size--) {
serial_in(&byte);
DBG("read: 0x%2x\n", byte);
flag = TTY_NORMAL;
port->icount.rx++;
if (uart_handle_sysrq_char(port, byte)) {
DBG("found ignore char !\n");
goto ignore_char;
}
uart_insert_char(port, 0, 0, byte, flag);
ignore_char:
i ++;
}
tty_flip_buffer_push(tty);
DBG("push to user space !\n");
}
static int tiny_tx_chars(struct uart_port *port)
{
struct circ_buf *xmit = &port->state->xmit;
int count;
DBG("tiny_tx_chars()\n");
if (port->x_char) {
DBG("wrote 0x%2x\r\n", port->x_char);
port->icount.tx++;
port->x_char = 0;
return 0;
}
if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
tiny_stop_tx(port);
return 0;
}
count = port->fifosize >> 1;
do {
DBG("wrote 0x%2x\r\n", xmit->buf[xmit->tail]);
serial_out(xmit->buf[xmit->tail]);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
if (uart_circ_empty(xmit))
break;
} while (--count > 0);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
if (uart_circ_empty(xmit))
tiny_stop_tx(port);
return ((port->fifosize >> 1) - count + 1);
}
static void tiny_start_tx(struct uart_port *port)
{
DBG("tiny_start_tx()\n");
}
static void tiny_timer(unsigned long data)
{
struct uart_port *port;
struct tty_port *tport;
int ret = 0;
DBG("tiny_timer()\n");
port = (struct uart_port *)data;
if (!port)
return;
if (!port->state)
return;
tport = &port->state->port;
/* resubmit the timer again */
timer->expires = jiffies + DELAY_TIME;
add_timer(timer);
/* see if we have any data to transmit */
ret = tiny_tx_chars(port);
tiny_rx_chars(port, ret);
}
static unsigned int tiny_tx_empty(struct uart_port *port)
{
DBG("tiny_tx_empty()\n");
return 0;
}
static unsigned int tiny_get_mctrl(struct uart_port *port)
{
DBG("tiny_get_mctrl()\n");
return 0;
}
static void tiny_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
DBG("tiny_set_mctrl()\n");
}
static void tiny_break_ctl(struct uart_port *port, int break_state)
{
DBG("tiny_set_mctrl()\n");
}
static void tiny_set_termios(struct uart_port *port,
struct ktermios *new, struct ktermios *old)
{
int baud, quot, cflag = new->c_cflag;
DBG("tiny_set_termios()\n");
/* get the byte size */
switch (cflag & CSIZE) {
case CS5:
DBG(" - data bits = 5\n");
break;
case CS6:
DBG(" - data bits = 6\n");
break;
case CS7:
DBG(" - data bits = 7\n");
break;
default: // CS8
DBG(" - data bits = 8\n");
break;
}
/* determine the parity */
if (cflag & PARENB)
if (cflag & PARODD)
DBG(" - parity = odd\n");
else
DBG(" - parity = even\n");
else
DBG(" - parity = none\n");
/* figure out the stop bits requested */
if (cflag & CSTOPB)
DBG(" - stop bits = 2\n");
else
DBG(" - stop bits = 1\n");
/* figure out the flow control settings */
if (cflag & CRTSCTS)
DBG(" - RTS/CTS is enabled\n");
else
DBG(" - RTS/CTS is disabled\n");
/* Set baud rate */
baud = uart_get_baud_rate(port, new, old, 9600, 115200);
quot = uart_get_divisor(port, baud);
}
static int tiny_startup(struct uart_port *port)
{
/* this is the first time this port is opened */
/* do any hardware initialization needed here */
DBG("tiny_startup()\n");
/* create our timer and submit it */
if (!timer) {
timer = kmalloc(sizeof(*timer), GFP_KERNEL);
if (!timer)
return -ENOMEM;
init_timer(timer);
}
timer->data = (unsigned long)port;
timer->expires = jiffies + DELAY_TIME;
timer->function = tiny_timer;
add_timer(timer);
return 0;
}
static void tiny_shutdown(struct uart_port *port)
{
/* The port is being closed by the last user. */
/* Do any hardware specific stuff here */
DBG("tiny_shutdown()\n");
/* shut down our timer */
del_timer(timer);
}
static const char *tiny_type(struct uart_port *port)
{
DBG("tiny_type()\n");
return "tinytty";
}
static void tiny_release_port(struct uart_port *port)
{
DBG("tiny_release_port()\n");
}
static int tiny_request_port(struct uart_port *port)
{
DBG("tiny_request_port()\n");
return 0;
}
static void tiny_config_port(struct uart_port *port, int flags)
{
DBG("tiny_config_port()\n");
}
static int tiny_verify_port(struct uart_port *port, struct serial_struct *ser)
{
DBG("tiny_verify_port()\n");
return 0;
}
static struct uart_ops tiny_ops = {
.tx_empty = tiny_tx_empty,
.set_mctrl = tiny_set_mctrl,
.get_mctrl = tiny_get_mctrl,
.stop_tx = tiny_stop_tx,
.start_tx = tiny_start_tx,
.stop_rx = tiny_stop_rx,
.enable_ms = tiny_enable_ms,
.break_ctl = tiny_break_ctl,
.startup = tiny_startup,
.shutdown = tiny_shutdown,
.set_termios = tiny_set_termios,
.type = tiny_type,
.release_port = tiny_release_port,
.request_port = tiny_request_port,
.config_port = tiny_config_port,
.verify_port = tiny_verify_port,
};
static struct uart_port tiny_port = {
.ops = &tiny_ops,
.line = 0,
.type = 104,
.iotype = SERIAL_IO_PORT,
.fifosize = 128,
.flags = ASYNC_BOOT_AUTOCONF,
.irq = 0,
};
static struct uart_driver tiny_reg = {
.owner = THIS_MODULE,
.driver_name = TINY_SERIAL_NAME,
.dev_name = TINY_SERIAL_NAME,
.major = TINY_SERIAL_MAJOR,
.minor = TINY_SERIAL_MINORS,
.nr = UART_NR,
};
static int __init tiny_init(void)
{
int result;
DBG(KERN_INFO "Tiny serial driver loaded\n");
result = uart_register_driver(&tiny_reg);
if (result) {
DBG("tiny_init() error!\n");
return result;
}
result = uart_add_one_port(&tiny_reg, &tiny_port);
if (result) {
DBG("uart_add_one_port() error!\n");
uart_unregister_driver(&tiny_reg);
}
read_ptr = buf;
write_ptr = buf;
return result;
}
module_init(tiny_init);
Then, I wrote a simple test-application which configures the port settings (baud rate, parity, stop bits, etc) and starts a write + read transaction, reading the previously written string.
Source code is shown next.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <termios.h>
#include <sys/stat.h>
#include <sys/select.h>
#include <sys/time.h>
#define PAR_NONE 0
#define PAR_EVEN 1
#define PAR_ODD 2
#define DATA_8BIT 1
#define DATA_7BIT 2
#define STOP_1BIT 1
#define STOP_2BIT 2
struct tiny_op {
int max_fd;
int fd;
fd_set rfds;
fd_set wfds;
fd_set efds;
struct timeval r_timeout;
struct timeval w_timeout;
};
static struct tiny_op tops;
static void set_termios(struct termios *termios, int baudrate, int parity, int bits, int stop)
{
termios->c_cflag |= CLOCAL | CREAD;
termios->c_cflag &= ~CSIZE;
switch (bits) {
case DATA_7BIT:
termios->c_cflag |= CS7;
break;
case DATA_8BIT:
termios->c_cflag |= CS8;
break;
default:
termios->c_cflag |= CS8;
break;
}
switch (parity) {
case PAR_NONE:
termios->c_cflag &= ~PARENB;
termios->c_cflag &= ~PARODD;
break;
case PAR_EVEN:
termios->c_cflag |= PARENB;
termios->c_cflag &= ~PARODD;
break;
case PAR_ODD:
termios->c_cflag |= PARENB;
termios->c_cflag |= PARODD;
break;
default:
termios->c_cflag &= ~PARENB;
termios->c_cflag &= ~PARODD;
break;
}
switch (stop) {
case STOP_1BIT:
termios->c_cflag &= ~CSTOPB;
break;
case STOP_2BIT:
termios->c_cflag |= CSTOPB;
break;
default:
termios->c_cflag &= ~CSTOPB;
break;
}
termios->c_iflag |= INPCK | ISTRIP;
termios->c_lflag = 0;
termios->c_oflag = 0;
termios->c_cc[VTIME] = 5;
termios->c_cc[VMIN] = 0;
cfsetspeed(termios, baudrate);
}
static int tiny_write(struct tiny_op *op, char *buff, int size)
{
int ret = -1;
int len = 0;
op->w_timeout.tv_sec = 5;
op->w_timeout.tv_usec = 0;
ret = select(op->max_fd, NULL, &op->wfds, &op->efds, &op->w_timeout);
if (ret < 0) {
printf("[TINY SERIAL] Select fallita (write) !\n");
return -1;
} if (0 == ret) {
printf("[TINY SERIAL] Select time-out (write) !\n");
} else {
if (FD_ISSET(op->fd, &op->efds)) {
printf("[TINY SERIAL] Attenzione: errore in scrittura!\n");
return -1;
}
if (FD_ISSET(op->fd, &op->wfds)) {
printf("[TINY SERIAL] Scrittura pronta, procedo !\n");
len = write(op->fd, (const void *)buff, size);
if (len == size) {
printf("[TINY SERIAL] Scrittura completata!\n");
} else {
printf("[TINY SERIAL] Scrittura parzialmente completata, scritti : = %d\n", len);
}
}
}
return 0;
}
static int tiny_read(struct tiny_op *op, char *buff, int size)
{
int ret = -1;
int len = 0;
op->r_timeout.tv_sec = 5;
op->r_timeout.tv_usec = 0;
ret = select(op->max_fd, &op->rfds, NULL, &op->efds, &op->r_timeout);
if (ret < 0) {
printf("[TINY SERIAL] Select fallita (read) !\n");
return -1;
} if (0 == ret) {
printf("[TINY SERIAL] Select time-out (read)!\n");
} else {
if (FD_ISSET(op->fd, &op->efds)) {
printf("[TINY SERIAL] Attenzione: errore in lettura!\n");
return -1;
}
if (FD_ISSET(op->fd, &op->rfds)) {
printf("[TINY SERIAL] Dati da leggere disponibili!\n");
len = read(op->fd, (void *)buff, size);
printf("[TINY SERIAL] Lettura da seriale: %s, len: %d\n", buff, len);
}
}
return 0;
}
int main(int argc, char **argv)
{
int fd = -1, ret = -1;
struct termios oldtio, newtio;
char *str = {"Hello world!!\0"};
char buff[strlen(str)];
if(argc == 1){
printf("[TINY DRIVER] Inserisci il device seriale da testare.\n");
return -1;
}
char * device = argv[1];
struct stat file_infos;
if(strlen(device) == 0){
printf("[TINY DRIVER] Seleziona un device corretto.\n");
return -1;
}
printf("[TINY DRIVER] Hai selezionato il device: %s\n", device);
if(stat(device, &file_infos) < 0){
printf("[TINY DRIVER] Attenzione: errore nell'accesso al device selezionato: %s, riprova con un altro dispositivo.\n", device);
return -1;
}
bzero((void *)&oldtio, sizeof(oldtio));
bzero((void *)&newtio, sizeof(newtio));
fd = open(device, O_RDWR | O_NONBLOCK | O_SYNC);
if (fd == -1) {
printf("[TINY SERIAL] failed to open /dev/ttytiny0 !\n");
return -1;
}
printf("[TINY SERIAL] succeed to open /dev/ttytiny0 !\n");
ret = tcgetattr(fd, &oldtio);
if (ret != 0) {
printf("[TINY SERIAL] failed to get attr !\n");
close(fd);
return -1;
}
set_termios(&newtio, B38400, PAR_EVEN, DATA_8BIT, STOP_2BIT);
tcflush(fd, TCIOFLUSH);
ret = tcsetattr(fd, TCSANOW, &newtio);
if (ret != 0) {
printf("[TINY SERIAL] failed to set termios !\n");
close(fd);
return -1;
}
tops.fd = fd;
tops.max_fd = tops.fd + 1;
FD_ZERO(&tops.rfds);
FD_ZERO(&tops.wfds);
FD_ZERO(&tops.efds);
FD_SET(tops.fd, &tops.rfds);
FD_SET(tops.fd, &tops.wfds);
FD_SET(tops.fd, &tops.efds);
if (tiny_write(&tops, str, strlen(str)) != 0) {
close(fd);
return -1;
}
if (tiny_read(&tops, buff, sizeof(buff)) != 0) {
close(fd);
return -1;
}
ret = tcsetattr(fd, TCSANOW, &oldtio);
if (ret != 0) {
printf("[TINY SERIAL] Errore nel reset delle impostazioni.\n");
}else{
printf("[TINY SERIAL] Impostazioni resettate correttamente.\n");
}
ret = tcflush(fd, TCIOFLUSH);
if(ret != 0){
printf("[TINY SERIAL] Errore nel flushing dei dati (finale) !\n");
}else{
printf("[TINY SERIAL] Dati flushati correttamente!\n");
}
//Program hangs on this call
ret = close(fd);
if (ret != 0) {
printf("[TINY SERIAL] Errore nella Chiusura del file !\n");
return -1;
}else{
printf("[TINY SERIAL] Chiusura del file avvenuta correttamente !\n");
}
return 0;
}
My problem is: the test application works fine (i can write and read my own string) until it reaches the close(2) function: there it hangs forever, without reaching the end of the program (I must close it with CTRL+C, and then it closes properly as the kernel module calls the tiny_shutdown() function).
I also tried to write a simple program to open and close the /dev/ttytiny0 device, but the result is the same (although I noticed that, if i remove the close(2) operation, the program still hangs without terminating, but this time I couldn't shut it down with CTRL+C).
Any link/reference to books or material on the subject will be highly appreciated.
Thanks in advance!
Edit : Reporting here the kernel log messages (while running test application)
[ 446.862221] tiny_ser: module verification failed: signature and/or required key missing - tainting kernel
[ 446.864143] tiny_serial: 6Tiny serial driver loaded
[ 486.715801] tiny_serial: tiny_startup()
[ 486.715812] tiny_serial: tiny_set_termios()
[ 486.715814] tiny_serial: - data bits = 8
[ 486.715816] tiny_serial: - parity = none
[ 486.715818] tiny_serial: - stop bits = 1
[ 486.715820] tiny_serial: - RTS/CTS is disabled
[ 486.715824] tiny_serial: tiny_set_mctrl()
[ 486.715853] tiny_serial: tiny_set_termios()
[ 486.715856] tiny_serial: - data bits = 8
[ 486.715857] tiny_serial: - parity = even
[ 486.715859] tiny_serial: - stop bits = 2
[ 486.715861] tiny_serial: - RTS/CTS is disabled
[ 486.715943] tiny_serial: tiny_start_tx()
[ 487.116105] tiny_serial: tiny_timer()
[ 487.116171] tiny_serial: tiny_tx_chars()
[ 487.116183] tiny_serial: wrote 0x42
[ 487.116189] tiny_serial: wrote 0x75
[ 487.116196] tiny_serial: wrote 0x6f
[ 487.116202] tiny_serial: wrote 0x6e
[ 487.116208] tiny_serial: wrote 0x61
[ 487.116214] tiny_serial: wrote 0x73
[ 487.116220] tiny_serial: wrote 0x65
[ 487.116226] tiny_serial: wrote 0x72
[ 487.116232] tiny_serial: wrote 0x61
[ 487.116238] tiny_serial: wrote 0x20
[ 487.116245] tiny_serial: wrote 0x64
[ 487.116251] tiny_serial: wrote 0x72
[ 487.116257] tiny_serial: wrote 0x69
[ 487.116263] tiny_serial: wrote 0x76
[ 487.116269] tiny_serial: wrote 0x65
[ 487.116275] tiny_serial: wrote 0x72
[ 487.116281] tiny_serial: wrote 0x21
[ 487.116287] tiny_serial: wrote 0x21
[ 487.116295] tiny_serial: tiny_stop_tx()
[ 487.116303] tiny_serial: read: 0x42
[ 487.116312] tiny_serial: read: 0x75
[ 487.116318] tiny_serial: read: 0x6f
[ 487.116324] tiny_serial: read: 0x6e
[ 487.116330] tiny_serial: read: 0x61
[ 487.116337] tiny_serial: read: 0x73
[ 487.116343] tiny_serial: read: 0x65
[ 487.116349] tiny_serial: read: 0x72
[ 487.116355] tiny_serial: read: 0x61
[ 487.116361] tiny_serial: read: 0x20
[ 487.116367] tiny_serial: read: 0x64
[ 487.116373] tiny_serial: read: 0x72
[ 487.116379] tiny_serial: read: 0x69
[ 487.116385] tiny_serial: read: 0x76
[ 487.116391] tiny_serial: read: 0x65
[ 487.116397] tiny_serial: read: 0x72
[ 487.116403] tiny_serial: read: 0x21
[ 487.116409] tiny_serial: read: 0x21
[ 487.116444] tiny_serial: push to user space !
[ 487.116565] tiny_serial: tiny_start_tx()
[ 487.116709] tiny_serial: tiny_set_termios()
[ 487.116713] tiny_serial: - data bits = 8
[ 487.116715] tiny_serial: - parity = none
[ 487.116717] tiny_serial: - stop bits = 1
[ 487.116719] tiny_serial: - RTS/CTS is disabled
[ 487.116746] tiny_serial: tiny_tx_empty()
[ 487.516021] tiny_serial: tiny_timer()
[ 487.516094] tiny_serial: tiny_tx_chars()
[ 487.516104] tiny_serial: tiny_stop_tx()
[ 487.915917] tiny_serial: tiny_timer()
[ 487.915960] tiny_serial: tiny_tx_chars()
[ 487.915971] tiny_serial: tiny_stop_tx()
[ 505.910955] tiny_serial: tiny_timer()
[ 505.910968] tiny_serial: tiny_tx_chars()
[ 505.910971] tiny_serial: tiny_stop_tx()
[ 506.455320] tiny_serial: tiny_timer()
[ 506.455332] tiny_serial: tiny_tx_chars()
[ 506.455335] tiny_serial: tiny_stop_tx()
[ 506.855344] tiny_serial: tiny_timer()
[ 506.855428] tiny_serial: tiny_tx_chars()
[ 506.855437] tiny_serial: tiny_stop_tx()
[ 507.255499] tiny_serial: tiny_timer()
[ 507.255563] tiny_serial: tiny_tx_chars()
[ 507.255572] tiny_serial: tiny_stop_tx()
[ 507.655342] tiny_serial: tiny_timer()
[ 507.655401] tiny_serial: tiny_tx_chars()
[ 507.655411] tiny_serial: tiny_stop_tx()
[ 507.755090] tiny_serial: tiny_stop_rx()
[ 507.755100] tiny_serial: tiny_tx_empty()
[ 507.755103] tiny_serial: tiny_set_mctrl()
[ 507.755105] tiny_serial: tiny_shutdown()
[ 507.755108] tiny_serial: tiny_shutdown() - after del_timer()
Note that the sequence tiny_stop_rx() - tiny_tx_empty() - tiny_set_mctrl() - tiny_shutdown() gets called when I terminate the test-application execution with CTRL+C.
Other repeated messages (the sequence tiny_timer() - tiny_tx_chars() - tiny_stop_tx()) are generated by the timer which checks if something has to be transmitted (but the queue is empty, so it sleeps again).
Of course, the test-application logs show a correct behavior, until reaching the close() function.
Your implementation returns 0
from tx_empty()
which means "not empty".
From kernel.org/doc/Documentation/serial/driver:
tx_empty(port)
This function tests whether the transmitter fifo and shifter for the port described by 'port' is empty. If it is empty, this function should return
TIOCSER_TEMT
, otherwise return 0. If the port does not support this operation, then it should returnTIOCSER_TEMT
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With