I tried to use google colab resources to save my CNN model weights and I get this error. I tried googling it but nothing helps.
'Sequential' object has no attribute '_in_multi_worker_mode'
My code:
checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1)
cnn_model = Sequential()
cnn_model.add(Conv2D(filters = 64, kernel_size = (3,3), activation = "relu", input_shape = Input_shape ))
cnn_model.add(Conv2D(filters = 64, kernel_size = (3,3), activation = "relu"))
cnn_model.add(MaxPooling2D(2,2))
cnn_model.add(Dropout(0.4))
cnn_model = Sequential()
cnn_model.add(Conv2D(filters = 128, kernel_size = (3,3), activation = "relu"))
cnn_model.add(Conv2D(filters = 128, kernel_size = (3,3), activation = "relu"))
cnn_model.add(MaxPooling2D(2,2))
cnn_model.add(Dropout(0.3))
cnn_model.add(Flatten())
cnn_model.add(Dense(units = 512, activation = "relu"))
cnn_model.add(Dense(units = 512, activation = "relu"))
cnn_model.add(Dense(units = 10, activation = "softmax"))
history = cnn_model.fit(X_train, y_train, batch_size = 32,epochs = 1,
shuffle = True, callbacks = [cp_callback])
Stack trace:
AttributeError Traceback (most recent call last)
<ipython-input-19-35c1db9636b7> in <module>()
----> 1 history = cnn_model.fit(X_train, y_train, batch_size = 32,epochs = 1, shuffle = True, callbacks = [cp_callback])
4 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/callbacks.py in on_train_begin(self, logs)
903 def on_train_begin(self, logs=None):
904 # pylint: disable=protected-access
--> 905 if self.model._in_multi_worker_mode():
906 # MultiWorkerTrainingState is used to manage the training state needed
907 # for preemption-recovery of a worker in multi-worker training.
AttributeError: 'Sequential' object has no attribute '_in_multi_worker_mode'
I've recently faced the same issue
instead of,
from tensorflow.keras.callbacks import ModelCheckpoint
use,
from keras.callbacks import ModelCheckpoint
Check your tensorflow version. You actually only need to synchronize it. check if all your import uses
from keras import ...
or
from tensorflow.keras import ...
use only one of the above for your keras imports. using different (both) at the same time can cause collision by the libraries.
Instead of
tf.keras.callbacks.ModelCheckpoint
in your model building process, you can use
from keras.callbacks import ModelCheckpoint
in order to import ModelCheckpoint
, and then just use ModelCheckpoint
in the later code.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With