I use spark-shell
to do the below operations.
Recently loaded a table with an array column in spark-sql .
Here is the DDL for the same:
create table test_emp_arr{
dept_id string,
dept_nm string,
emp_details Array<string>
}
the data looks something like this
+-------+-------+-------------------------------+
|dept_id|dept_nm| emp_details|
+-------+-------+-------------------------------+
| 10|Finance|[Jon, Snow, Castle, Black, Ned]|
| 20| IT| [Ned, is, no, more]|
+-------+-------+-------------------------------+
I can query the emp_details column something like this :
sqlContext.sql("select emp_details[0] from emp_details").show
Problem
I want to query a range of elements in the collection :
Expected query to work
sqlContext.sql("select emp_details[0-2] from emp_details").show
or
sqlContext.sql("select emp_details[0:2] from emp_details").show
Expected output
+-------------------+
| emp_details|
+-------------------+
|[Jon, Snow, Castle]|
| [Ned, is, no]|
+-------------------+
In pure Scala, if i have an array something as :
val emp_details = Array("Jon","Snow","Castle","Black")
I can get the elements from 0 to 2 range using
emp_details.slice(0,3)
returns me
Array(Jon, Snow,Castle)
I am not able to apply the above operation of the array in spark-sql.
Thanks
Here is a solution using a User Defined Function which has the advantage of working for any slice size you want. It simply builds a UDF function around the scala builtin slice
method :
import sqlContext.implicits._
import org.apache.spark.sql.functions._
val slice = udf((array : Seq[String], from : Int, to : Int) => array.slice(from,to))
Example with a sample of your data :
val df = sqlContext.sql("select array('Jon', 'Snow', 'Castle', 'Black', 'Ned') as emp_details")
df.withColumn("slice", slice($"emp_details", lit(0), lit(3))).show
Produces the expected output
+--------------------+-------------------+
| emp_details| slice|
+--------------------+-------------------+
|[Jon, Snow, Castl...|[Jon, Snow, Castle]|
+--------------------+-------------------+
You can also register the UDF in your sqlContext
and use it like this
sqlContext.udf.register("slice", (array : Seq[String], from : Int, to : Int) => array.slice(from,to))
sqlContext.sql("select array('Jon','Snow','Castle','Black','Ned'),slice(array('Jon','Snow','Castle','Black','Ned'),0,3)")
You won't need lit
anymore with this solution
Since Spark 2.4 you can use slice
function. In Python):
pyspark.sql.functions.slice(x, start, length)
Collection function: returns an array containing all the elements in x from index start (or starting from the end if start is negative) with the specified length.
...
New in version 2.4.
from pyspark.sql.functions import slice
df = spark.createDataFrame([
(10, "Finance", ["Jon", "Snow", "Castle", "Black", "Ned"]),
(20, "IT", ["Ned", "is", "no", "more"])
], ("dept_id", "dept_nm", "emp_details"))
df.select(slice("emp_details", 1, 3).alias("empt_details")).show()
+-------------------+
| empt_details|
+-------------------+
|[Jon, Snow, Castle]|
| [Ned, is, no]|
+-------------------+
In Scala
def slice(x: Column, start: Int, length: Int): Column
Returns an array containing all the elements in x from index start (or starting from the end if start is negative) with the specified length.
import org.apache.spark.sql.functions.slice
val df = Seq(
(10, "Finance", Seq("Jon", "Snow", "Castle", "Black", "Ned")),
(20, "IT", Seq("Ned", "is", "no", "more"))
).toDF("dept_id", "dept_nm", "emp_details")
df.select(slice($"emp_details", 1, 3) as "empt_details").show
+-------------------+
| empt_details|
+-------------------+
|[Jon, Snow, Castle]|
| [Ned, is, no]|
+-------------------+
The same thing can be of course done in SQL
SELECT slice(emp_details, 1, 3) AS emp_details FROM df
Important:
Please note, that unlike Seq.slice
, values are indexed from zero and the second argument is length, not end position.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With