I have a DataFrame
like this:
In [140]: df.head()
Out[140]:
user brand action nthday
0 767 3961 0 51
1 767 3961 2 51
2 767 3961 2 51
3 767 3961 0 51
4 767 3961 0 51
I want to select rows with a list of tuple like this:
mylist = [(767, 3961), (768, 4201),...]
I can do with what I want with:
# ( (767, 3961, 0, 51), ... )
intermediate_ = ( tuple(r) for (i,r) in df.iterrows() if tuple(r)[:2] in set(mylist))
# reconstruct a DataFrame
subdf = DataFrame(intermediate_, columns = ['user', 'brand', 'action', ..])
This works but is awkward and slow. What is the recommended way in pandas
?
Just set the columns of interest as an index, sort, and use .loc
Create a frame as an example
In [8]: df = DataFrame(np.random.randn(12,1),index=pd.MultiIndex.from_product([list(range(3)),list(range(4))],names=['foo','bar']))
In [10]: df.reset_index()
Out[10]:
foo bar 0
0 0 0 -0.225873
1 0 1 -0.275865
2 0 2 -1.324766
3 0 3 -0.607122
4 1 0 -1.465992
5 1 1 -1.582276
6 1 2 -0.718533
7 1 3 -1.904252
8 2 0 0.588496
9 2 1 -1.057599
10 2 2 0.388754
11 2 3 -0.940285
In [11]: x = df.reset_index()
In [12]: df2 = x.set_index(['foo','bar']).sort_index()
In [13]: df2
Out[13]:
0
foo bar
0 0 -0.225873
1 -0.275865
2 -1.324766
3 -0.607122
1 0 -1.465992
1 -1.582276
2 -0.718533
3 -1.904252
2 0 0.588496
1 -1.057599
2 0.388754
3 -0.940285
Select with tuples
In [14]: df2.loc[[(0,2),(2,0),(2,3)]]
Out[14]:
0
foo bar
0 2 -1.324766
2 0 0.588496
3 -0.940285
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With