I wish to select some specific rows based on two column values. For example:
d = {'user' : [1., 2., 3., 4] ,'item' : [5., 6., 7., 8.],'f1' : [9., 16., 17., 18.], 'f2':[4,5,6,5], 'f3':[4,5,5,8]}
df = pd.DataFrame(d)
print df
Out:
f1 f2 f3 item user
0 9 4 4 5 1
1 16 5 5 6 2
2 17 6 5 7 3
3 18 5 8 8 4
I want to select the rows based on the values of 'user' and 'item'. Given an 2d numpy array which stores the [user, item] values pairs:
samples = np.array([[1,5],[3,7],[3,7],[2,6]])
Out:
array([[1, 5],
[3, 7],
[3, 7],
[2, 6]])
Then the expected output is:
Out:
f1 f2 f3 item user
0 9 4 4 5 1
2 17 6 5 7 3
2 17 6 5 7 3
1 16 5 5 6 2
Then, my final objective is to get an 2d numpy array stores all the columns values except item and user, which is:
Out:
array([[9, 4, 4],
[17, 6, 5],
[17, 6, 5],
[16, 5, 5]])
As we can see, it is the values of columns f1, f2, f3.
How can I do this?
If you make samples
a DataFrame with columns user
and item
, then you can obtain the desired values with an inner join. By default, pd.merge
merges on all columns of samples
and df
shared in common -- in this case, that would be user
and item
. Hence,
result = pd.merge(samples, df, how='inner')
yields
user item f1 f2 f3
0 1 5 9 4 4
1 3 7 17 6 5
2 3 7 17 6 5
3 2 6 16 5 5
import numpy as np
import pandas as pd
d = {'user' : [1., 2., 3., 4] ,'item' : [5., 6., 7., 8.],'f1' : [9., 16., 17., 18.], 'f2':[4,5,6,5], 'f3':[4,5,5,8]}
df = pd.DataFrame(d)
samples = np.array([[1,5],[3,7],[3,7],[2,6]])
samples = pd.DataFrame(samples, columns=['user', 'item'])
result = pd.merge(samples, df, how='inner')
result = result[['f1', 'f2', 'f3']]
result = result.values
print(result)
yields
[[ 9. 4. 4.]
[ 17. 6. 5.]
[ 17. 6. 5.]
[ 16. 5. 5.]]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With