I am trying to create a new DataFrame using only one index from a multi-indexed DataFrame.
A B C first second bar one 0.895717 0.410835 -1.413681 two 0.805244 0.813850 1.607920 baz one -1.206412 0.132003 1.024180 two 2.565646 -0.827317 0.569605 foo one 1.431256 -0.076467 0.875906 two 1.340309 -1.187678 -2.211372 qux one -1.170299 1.130127 0.974466 two -0.226169 -1.436737 -2.006747
Ideally, I would like something like this:
In: df.ix[level="first"]
and:
Out: A B C first bar 0.895717 0.410835 -1.413681 0.805244 0.813850 1.607920 baz -1.206412 0.132003 1.024180 2.565646 -0.827317 0.569605 foo 1.431256 -0.076467 0.875906 1.340309 -1.187678 -2.211372 qux -1.170299 1.130127 0.974466 -0.226169 -1.436737 -2.006747 `
Essentially I want to drop all the other indexes of the multi-index other than level first
. Is there an easy way to do this?
So, if you want to select the 5th row in a DataFrame, you would use df. iloc[[4]] since the first row is at index 0, the second row is at index 1, and so on. . loc selects rows based on a labeled index.
To revert the index of the dataframe from multi-index to a single index using the Pandas inbuilt function reset_index(). Returns: (Data Frame or None) DataFrame with the new index or None if inplace=True.
One way could be to simply rebind df.index
to the desired level of the MultiIndex. You can do this by specifying the label name you want to keep:
df.index = df.index.get_level_values('first')
or use the level's integer value:
df.index = df.index.get_level_values(0)
All other levels of the MultiIndex would disappear here.
The solution is fairly new and uses the df.xs
function as
In [88]: df.xs('bar', level='first') Out[88]: Second Third one A -2.315312 B 0.497769 C 0.108523 two A -0.778303 B -1.555389 C -2.625022 dtype: float64
Can also do with multiple indices as
In [89]: df.xs(('bar', 'A'), level=('First', 'Third')) Out[89]: Second one -2.315312 two -0.778303 dtype: float64
The setup for the examples is below
import pandas as pd import numpy as np arrays = [ np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']), np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']) ] index = pd.MultiIndex.from_tuples(list(zip(*arrays)), names=['first', 'second']) df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index) df.index.names = pd.core.indexes.frozen.FrozenList(['First', 'Second', 'Third']) df = df.unstack()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With