This is my DataFrame:
d = {'col1': ['sku 1.1', 'sku 1.2', 'sku 1.3'], 'col2': ['9.876.543,21', 654, '321,01']}
df = pd.DataFrame(data=d)
df
col1 col2
0 sku 1.1 9.876.543,21
1 sku 1.2 654
2 sku 1.3 321,01
Data in col2 are numbers in local format, which I would like to convert into:
col2
9876543.21
654
321.01
I tried df['col2'] = pd.to_numeric(df['col2'], downcast='float')
, which returns a ValueError: : Unable to parse string "9.876.543,21" at position 0.
I tried also df = df.apply(lambda x: x.str.replace(',', '.'))
, which returns ValueError: could not convert string to float: '5.023.654.46'
The best is use if possible parameters in read_csv
:
df = pd.read_csv(file, thousands='.', decimal=',')
If not possible, then replace
should help:
df['col2'] = (df['col2'].replace('\.','', regex=True)
.replace(',','.', regex=True)
.astype(float))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With