I am trying to plot two displots side by side with this code
fig,(ax1,ax2) = plt.subplots(1,2)
sns.displot(x =X_train['Age'], hue=y_train, ax=ax1)
sns.displot(x =X_train['Fare'], hue=y_train, ax=ax2)
It returns the following result (two empty subplots followed by one displot each on two lines)-



If I try the same code with violinplot, it returns result as expected
fig,(ax1,ax2) = plt.subplots(1,2)
sns.violinplot(y_train, X_train['Age'], ax=ax1)
sns.violinplot(y_train, X_train['Fare'], ax=ax2)

Why is displot returning a different kind of output and what can I do to output two plots on the same line?
You can use the following basic syntax to create subplots in the seaborn data visualization library in Python: #define dimensions of subplots (rows, columns) fig, axes = plt. subplots(2, 2) #create chart in each subplot sns. boxplot(data=df, x='team', y='points', ax=axes[0,0]) sns.
In Seaborn, we will plot multiple graphs in a single window in two ways. First with the help of Facetgrid() function and other by implicit with the help of matplotlib. data: Tidy dataframe where each column is a variable and each row is an observation.
This function has been deprecated and will be removed in seaborn v0. 14.0. It has been replaced by histplot() and displot() , two functions with a modern API and many more capabilities.
Seaborn provides an API on top of Matplotlib that offers sane choices for plot style and color defaults, defines simple high-level functions for common statistical plot types, and integrates with the functionality provided by Pandas DataFrame s.
seaborn.distplot has been DEPRECATED in seaborn 0.11 and is replaced with the following:
displot(), a figure-level function with a similar flexibility over the kind of plot to draw. This is a FacetGrid, and does not have the ax parameter, so it will not work with matplotlib.pyplot.subplots.histplot(), an axes-level function for plotting histograms, including with kernel density smoothing. This does have the ax parameter, so it will work with matplotlib.pyplot.subplots.seaborn FacetGrid plots that there is no ax parameter. Use the equivalent axes-level plot.
histplot.maplotlib.pyplot.subplots
seaborn 0.11.1 & matplotlib 3.4.2
fig, (ax1, ax2) = plt.subplots(1, 2)
sns.histplot(x=X_train['Age'], hue=y_train, ax=ax1)
sns.histplot(x=X_train['Fare'], hue=y_train, ax=ax2)
import seaborn as sns
import matplotlib.pyplot as plt
# load data
penguins = sns.load_dataset("penguins", cache=False)
# display(penguins.head())
  species     island  bill_length_mm  bill_depth_mm  flipper_length_mm  body_mass_g     sex
0  Adelie  Torgersen            39.1           18.7              181.0       3750.0    MALE
1  Adelie  Torgersen            39.5           17.4              186.0       3800.0  FEMALE
2  Adelie  Torgersen            40.3           18.0              195.0       3250.0  FEMALE
3  Adelie  Torgersen             NaN            NaN                NaN          NaN     NaN
4  Adelie  Torgersen            36.7           19.3              193.0       3450.0  FEMALE
sns.histplot
# select the columns to be plotted
cols = ['bill_length_mm', 'bill_depth_mm']
# create the figure and axes
fig, axes = plt.subplots(1, 2)
axes = axes.ravel()  # flattening the array makes indexing easier
for col, ax in zip(cols, axes):
    sns.histplot(data=penguins[col], kde=True, stat='density', ax=ax)
fig.tight_layout()
plt.show()

displot
# create a long dataframe
dfl = penguins.melt(id_vars='species', value_vars=['bill_length_mm', 'bill_depth_mm'], var_name='bill_size', value_name='vals')
# display(dfl.head())
  species       bill_size  vals
0  Adelie  bill_length_mm  39.1
1  Adelie   bill_depth_mm  18.7
2  Adelie  bill_length_mm  39.5
3  Adelie   bill_depth_mm  17.4
4  Adelie  bill_length_mm  40.3
# plot
sns.displot(data=dfl, x='vals', col='bill_size', kde=True, stat='density', common_bins=False, common_norm=False, height=4, facet_kws={'sharey': False, 'sharex': False})
pd.concat, and use .assign to create an identifying 'source' column, which can be used for row=, col=, or hue=
# list of dataframe
lod = [df1, df2, df3]
# create one dataframe with a new 'source' column to use for row, col, or hue
df = pd.concat((d.assign(source=f'df{i}') for i, d in enumerate(lod, 1)), ignore_index=True)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With