I am struggling to massage a dataframe in pandas into the correct format for seaborn's heatmap (or matplotlib really) to make a heatmap.
My current dataframe (called data_yule) is:
Unnamed: 0 SymmetricDivision test MutProb value
3 3 1.0 sackin_yule 0.100 -4.180864
8 8 1.0 sackin_yule 0.050 -9.175349
13 13 1.0 sackin_yule 0.010 -11.408114
18 18 1.0 sackin_yule 0.005 -10.502450
23 23 1.0 sackin_yule 0.001 -8.027475
28 28 0.8 sackin_yule 0.100 -0.722602
33 33 0.8 sackin_yule 0.050 -6.996394
38 38 0.8 sackin_yule 0.010 -10.536340
43 43 0.8 sackin_yule 0.005 -9.544065
48 48 0.8 sackin_yule 0.001 -7.196407
53 53 0.6 sackin_yule 0.100 -0.392256
58 58 0.6 sackin_yule 0.050 -6.621639
63 63 0.6 sackin_yule 0.010 -9.551801
68 68 0.6 sackin_yule 0.005 -9.292469
73 73 0.6 sackin_yule 0.001 -6.760559
78 78 0.4 sackin_yule 0.100 -0.652147
83 83 0.4 sackin_yule 0.050 -6.885229
88 88 0.4 sackin_yule 0.010 -9.455776
93 93 0.4 sackin_yule 0.005 -8.936463
98 98 0.4 sackin_yule 0.001 -6.473629
103 103 0.2 sackin_yule 0.100 -0.964818
108 108 0.2 sackin_yule 0.050 -6.051482
113 113 0.2 sackin_yule 0.010 -9.784686
118 118 0.2 sackin_yule 0.005 -8.571063
123 123 0.2 sackin_yule 0.001 -6.146121
and my attempts using matplotlib was:
plt.pcolor(data_yule.SymmetricDivision, data_yule.MutProb, data_yule.value)
which threw the error:
ValueError: not enough values to unpack (expected 2, got 1)
and the seaborn attempt was:
sns.heatmap(data_yule.SymmetricDivision, data_yule.MutProb, data_yule.value)
which threw:
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
It seems trivial as both functions want rectangular dataset, but I'm missing something, clearly.
Seaborn provides an API on top of Matplotlib that offers sane choices for plot style and color defaults, defines simple high-level functions for common statistical plot types, and integrates with the functionality provided by Pandas DataFrame s.
To make a heatmap from pandas DataFrame, we need to install the seaborn library. We will use seaborn. heatmap() method to make a heatmap.
Method 2 : By using matplotlib library In this method, the Panda dataframe will be displayed as a heatmap where the cells of the heatmap will be colour-coded according to the values in the dataframe. A colour bar will be present besides the heatmap which acts as a legend for the figure. Below is the implementation.
Use pandas.DataFrame.pivot
(no aggregation of values=
) or pandas.DataFrame.pivot_table
(with aggregation of values=
) to reshape the dataframe from a long to wide form. The index will be on the y-axis, and the columns will be on the x-axis. See Reshaping and pivot tables for an overview.
In [96]: result
Out[96]:
MutProb 0.001 0.005 0.010 0.050 0.100
SymmetricDivision
0.2 -6.146121 -8.571063 -9.784686 -6.051482 -0.964818
0.4 -6.473629 -8.936463 -9.455776 -6.885229 -0.652147
0.6 -6.760559 -9.292469 -9.551801 -6.621639 -0.392256
0.8 -7.196407 -9.544065 -10.536340 -6.996394 -0.722602
1.0 -8.027475 -10.502450 -11.408114 -9.175349 -4.180864
Then you can pass the 2D array (or DataFrame) to seaborn.heatmap
or plt.pcolor
:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# load the sample data
df = pd.DataFrame({'MutProb': [0.1,
0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001], 'SymmetricDivision': [1.0, 1.0, 1.0, 1.0, 1.0, 0.8, 0.8, 0.8, 0.8, 0.8, 0.6, 0.6, 0.6, 0.6, 0.6, 0.4, 0.4, 0.4, 0.4, 0.4, 0.2, 0.2, 0.2, 0.2, 0.2], 'test': ['sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule'], 'value': [-4.1808639999999997, -9.1753490000000006, -11.408113999999999, -10.50245, -8.0274750000000008, -0.72260200000000008, -6.9963940000000004, -10.536339999999999, -9.5440649999999998, -7.1964070000000007, -0.39225599999999999, -6.6216390000000001, -9.5518009999999993, -9.2924690000000005, -6.7605589999999998, -0.65214700000000003, -6.8852289999999989, -9.4557760000000002, -8.9364629999999998, -6.4736289999999999, -0.96481800000000006, -6.051482, -9.7846860000000007, -8.5710630000000005, -6.1461209999999999]})
# pivot the dataframe from long to wide form
result = df.pivot(index='SymmetricDivision', columns='MutProb', values='value')
sns.heatmap(result, annot=True, fmt="g", cmap='viridis')
plt.show()
yields
Another option using .grouby()
and .unstack()
df_m = df.groupby(["SymmetricDivision", "MutProb"])
.size()
.unstack(level=0)
sns.heatmap(df_m)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With