I want to set parameters of SVC using set_params() as shown in the following sample code.
from sklearn.svm import SVC
params = {'C': [.1, 1, 10]}
for k, v in params.items():
for val in v:
clf = SVC().set_params(k=val)
print(clf)
print()
If I run the code, I get the following error:
ValueError: Invalid parameter k for estimator SVC
How can I put the key into set_params() correctly?
The problem is actually how to use a string as a keyword argument. You can construct a parameter dict and pass it to set_params
using the **
syntax.
from sklearn.svm import SVC
params = {'C': [.1, 1, 10]}
for k, v in params.items():
for val in v:
clf = SVC().set_params(**{k: val})
print(clf)
print()
Out:
SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
While the previous answer just works fine it might be useful to also cover the case with more than one parameter. In this case sklearn also has a nice convenience function to create the parameter grid which makes it just more readable.
from sklearn.model_selection import ParameterGrid
from sklearn.svm import SVC
param_grid = ParameterGrid({'C': [.1, 1, 10], 'gamma':["auto", 0.01]})
for params in param_grid:
svc_clf = SVC(**params)
print (svc_clf)
Which gives a similar results:
SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0,In [235]:
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=0.01, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=0.01, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
SVC(C=10, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
SVC(C=10, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=0.01, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With